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1 Martingales
In this lecture, we extend Chernoff-type bounds along two important axes:

• Previously, we only considered linear functionals or norms of bounded/sub-Gaussian/sub-
exponential random vectors. In this lecture, we will derive concentration inequalities which
work for arbitrary functions which are Lipschitz in a very natural sense.

• Up until now, nearly all our stochastic processes have been given by collections of independent
random variables. In this lecture, we move far beyond the independent setting, and study
martingales.

Definition 1 (Martingale). We say a (possibly finite) sequence of random variables {Yn}n≥0 is a
martingale with respect to another sequence of random variables {Xn}n≥0 if for every n,

• E [|Yn|] < ∞,

• Yn is a function of X0, . . . , Xn, and

• E[Yn+1 | X0, . . . , Xn] = Yn.

We simply say {Yn}n≥0 is a martingale if it is a martingale with respect to itself.

The key martingale criterion says that the difference Yn+1−Yn is unbiased (has expectation zero)
conditioned the past information. Note that the proper level of generality in which a martingale
should be defined is via filtrations and measure theory. Since we won’t need this in the bulk of
this course, we relegate a formal discussion to Appendix A.

At a high level, one can view the random variables X0, . . . , Xn as the “information” one has “up
to time n”. This intuition is perhaps best illustrated through a representative class of examples.

1.1 Doob Martingales
As a thought experiment, consider the following statistical estimation “game” played between two
players Alice and Bob. To set the parameters of the game before they play, Alice and Bob agree
on some fixed deterministic function f : Rn → R (e.g. the sum f(x1, . . . , xn) =

∑n
i=1 xi), and

some probability distribution µ over Rn such that Eµ [|f |] < ∞. Note that the coordinates of a
random sample from µ may be arbitrarily correlated. Alice and Bob are also allowed unbounded
computational resources.

Having agreed on f and µ, to play the game, Alice samples a random vector X = (X1, . . . , Xn) ∼
µ and computes Y = f(X1, . . . , Xn), which is a random variable whose randomness depends on X.
Bob’s goal is to estimate the value of Y that Alice has sampled. Given zero information about the
inputs X Alice sampled, one possible strategy for Bob is to simply output the expectation Eµ[f ]
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of f with respect to µ. This makes a lot of intuitive sense, especially if µ is concentrated, and in
fact, it is easy to check that it is optimal with respect to the expected squared distance to Y , i.e.

Eµ[f ] = argmin
s∈R

EY

[
(s− Y )

2
]
.

What if Alice decides to be generous, and reveals the first k coordinates X1, . . . , Xk for some
0 ≤ k ≤ n? Certainly, if k = n, then Bob could just compute Y = f(X). If k < n, then the natural
generalization of the k = 0 strategy we just mentioned is for Bob to compute

Yk = Eµ [f(X1, . . . , Xn) | X1, . . . , Xk] .

Once the values of X1, . . . , Xk are fixed and revealed to Bob, the estimator Yk that Bob outputs
becomes some fixed number. However, we can also think of Yk as a random variable whose
randomness comes from the X1, . . . , Xk Alice sampled.

Lemma 1.1. The random variables {Yk}nk=0 form a martingale with respect to {Xk}nk=1.
1

Proof. Observe that for each 0 ≤ k ≤ n− 1,

E [Yk+1 | X1, . . . , Xk] = E [E [f(X) | X1, . . . , Xk+1] | X1, . . . , Xk] (Definition of Yk+1)
= E [f(X) | X1, . . . , Xk] (∗)
= Yk.

Here, the crucial step (∗) follows from the Tower Property of Conditional Expectations.2 One way
to think about it is that in the expression involving nested expectations, the inner one is over the
unrevealed coordinates Xk+2, . . . , Xn, and the outer one introduces an additional expectation over
Xk+1.

The scenario we just described is a concrete example of how martingales model situations in
which information is gradually accumulated over time. This is perhaps the primary reason why
martingales are so powerful and well-studied. Lemma 1.1 is a special case of a much more general
class of martingales called Doob martingales (or Lévy martingales), all of which have this intuitive
interpretation. Let us see a few concrete examples of Doob martingales.

Balls in Bins Suppose we have m balls and n bins. In the kth step, we throw the kth ball
independently into a uniformly random bin Xk ∈ {1, . . . , n}. This type of process commonly
appears in the analysis of load balancing protocols in parallel computing, and data structures based
on hashing. After throwing all the balls, we are interested in the statistics of the distribution of
balls among the bins. An example of such a statistic is the number of empty bins

f(X1, . . . , Xm) = #{i ∈ [n] : Xk ̸= i,∀k}.

This particular statistic can actually be expressed as a sum of random variables, namely

#{empty bins} =

n∑
i=1

1[bin i is empty].

However, these indicator random variables are not independent.3 To get around this, one can
instead build an associated Doob martingale by letting Yk = E[f(X1, . . . , Xm) | X1, . . . , Xk], and
then use this martingale to study e.g. concentration of Ym = f(X1, . . . , Xm) around its expectation.

Edge/Vertex Exposure in Random Graphs Let f be any function mapping simple undi-
rected graphs G to real numbers. A fruitful technique for studying the random variable f(G) for
a randomly chosen graph G (e.g. according to Erdös–Rényi G(n, p)) is to iteratively reveal infor-
mation about G and study the associated Doob martingale. Two natural ways are the following:

1One can artificially set X0 = ∅, which represents Alice “adding no new information” about X.
2This is just a fancier term for the Law of Total Expectation or the Law of Total Probability.
3One can show, however, that these random variables are negatively correlated.
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• Edge Exposure Filtration: One can fix some ordering e1, . . . , e(V2)
of the set of pairs(

V
2

)
, and then reveal whether or not et ∈ G as one iterates over t. For each 0 ≤ t ≤

(
V
2

)
,

one gets a random set of edges Et ⊆ {e1, . . . , et}, and a corresponding Doob martingale
Yt = E[f(G) | E0, . . . , Et].

• Vertex Exposure Filtration: One can also fix some ordering v1, . . . , vn, and then reveal
the set of edges between vt and v1, . . . , vt−1 in G as one iterates over t. Hence, for each
0 ≤ t ≤ n, one gets the (random) induced subgraph Gt of G on vertex set {v1, . . . , vt}, and
a corresponding Doob martingale Yt = E[f(G) | G0, . . . , Gt].

Note that f can be an incredibly complicated function. For instance, if f is the chromatic number,
then even approximating f to within a multiplicative factor of nΩ(1) is as hard as solving general
instances of SAT (i.e. it is NP-hard). Nonetheless, martingale techniques can allow one to deduce
strong concentration around its expectation without even knowing what the expectation is; note,
however, that establishing matching upper and lower bounds for the latter task is nontrivial. We
discuss the chromatic number in greater depth in Section 4.

1.2 Other Simple Examples of Martingales
Gambling Let {Xn}∞n=0 be a sequence of i.i.d. Unif{±1} random variables, and for a sequence
of deterministic functions {fn : {±1}n → R≥0}∞n=1, define the random variables

Wn = Wn−1 + fn (X0, . . . , Xn−1) ·Xn, ∀n ∈ N.

Then {Wn}∞n=0 is a martingale with respect to {Xn}∞n=0 by independence and the fact that each
Xn has mean-zero. If {Xn}∞n=0 are the win/loss outcomes of a (fair) game at a casino, one can
then interpret the sequence of functions {fn}∞n=1 as a gambling strategy, where the player bets
fn (X0, . . . , Xn−1) units of currency based on looking at the history of outcomes X0, . . . , Xn−1.
The random variables {Wn}∞n=0 then represent the evolution of the player’s wealth.

Remark 1. Later in the course, we will discuss another class of dependent stochastic processes
called Markov chains, whose definition has perhaps a similar flavor to Definition 1. However, these
are distinct (although related) concepts. For example, one can view the martingale {Wn}∞n=0 as
an unbiased random walk which is not Markovian, because the size of the next step depends on
the entire history, not only the current state. It is also easy to construct Markov chains which are
not martingales (e.g. biased random walks on Z).

Galton–Watson Branching Processes Suppose {Zℓ}ℓ∈N is a Galton–Watson branching pro-
cess with offspring distribution ξ having finite mean µ and variance σ2. Then the random variables{
Zℓ/µ

ℓ
}
ℓ∈N form a martingale, since

E

[
Zk+1

µk+1

∣∣∣∣∣ Z0

µ0
, . . . ,

Zk

µk

]
= E

[
Zk+1

µk+1

∣∣∣∣∣ Zk

µk

]
=

Zk · µ
µk+1

=
Zk

µk
.

Second Moment Martingales Let {Xn}∞n=0 be a sequence of independent zero-mean random
variables with variance σ2 < ∞. Then the sequence of random variables {Yn}∞n=0 given by

Yn
def
=

(
n∑

k=0

Xk

)2

− σ2n
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is a martingale with respect to {Xn}∞n=0. Indeed,

E [Yn+1 | X0, . . . , Xn] = E

(Xn+1 +

n∑
k=0

Xk

)2

− σ2(n+ 1)

∣∣∣∣∣X0, . . . , Xn


= E

X2
n+1 + 2Xn+1

n∑
k=0

Xk +

(
n∑

k=0

Xk

)2

− σ2(n+ 1)

∣∣∣∣∣X0, . . . , Xn


=

(
n∑

k=0

Xk

)2

− σ2n (Independence and linearity of expectation)

= Yn.

Actually, if one were to cut off these sequences at some finite N , then by using independence of
{Xn}Nn=0, we can write {Yn}Nn=0 as a Doob martingale with respect to {Xn}Nn=0 in the form given

in Lemma 1.1 by letting f(X0, . . . , XN ) =
(∑N

k=0 Xk

)2
− σ2N .

2 Concentration for Martingales
Let us begin with a basic observation concerning the mean and variance of a martingale.

Lemma 2.1. Let {Yn}n≥0 be a martingale with respect to another sequence of random variables
{Xn}n≥0. Then for all n, we have

E[Yn] = E[Y0] and E
[
(Yn − Y0)

2
]
=

n∑
k=1

E
[
(Yk − Yk−1)

2
]
.

Proof. The first claim is an immediate consequence of the Tower Property of Conditional Expec-
tations. Using this, we can rewrite the second claim as

Var (Yn − Y0) =

n∑
k=1

Var (Yk − Yk−1) .

Since Yn−Y0 =
∑n

k=1(Yk−Yk−1) (by telescoping), it suffices to prove that Yk−Yk−1 is uncorrelated
with Yℓ − Yℓ−1 for any k < ℓ. For this, we have

E [(Yℓ − Yℓ−1) (Yk − Yk−1)] = E [E [(Yℓ − Yℓ−1) (Yk − Yk−1) | X0, . . . , Xk]]

= E [(Yk − Yk−1) · E [Yℓ − Yℓ−1 | X0, . . . , Xk]]
(Yk − Yk−1 is a function of X0, . . . , Xk)

= 0,

where we used k < ℓ so that E[Yℓ − Yℓ−1 | X0, . . . , Xk] = 0.

In particular, if Y0 ≡ 0, then Lemma 2.1 shows that the variance of Yn can be decomposed as a
sum of the variances of the increments Yk−Yk−1. Now, similar to Chernoff–Hoeffding, if we ensure
almost-sure boundedness of these increments, then we can obtain Chernoff-type concentration.

Theorem 2.2 (Azuma–Hoeffding Inequality). Let {Yn}n≥0 be a martingale with respect to another
sequence of random variables {Xn}n≥0. If for each n, there exists a positive constant cn > 0 such
that |Yn − Yn−1| ≤ cn almost surely, then

Pr [Yn − Y0 ≥ t] ≤ exp

(
− t2

2
∑n

k=1 c
2
k

)
, ∀n, ∀t ≥ 0.

Remark 2. Note that if Y0 is identically equal to some constant, e.g. 0, then Y0 = E[Yn] and the
above yields a bound on the probability that Yn deviates from its expectation.

Remark 3. One can easily generalize the proof to the setting where the increments are sub-Gaussian
or sub-exponential (almost surely conditioned on the past).
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Proof. As usual, we consider the moment generating function. For a parameter s > 0, observe that

E [exp (s · (Yn − Y0)) | X0, . . . , Xn−1]

= E [exp (s · (Yn−1 − Y0)) · exp (s · (Yn − Yn−1)) | X0, . . . , Xn−1]

= exp (s · (Yn−1 − Y0)) · E [exp (s · (Yn − Yn−1)) | X0, . . . , Xn−1]

≤ exp (s · (Yn−1 − Y0)) · exp
(
c2ns

2

2

)
. (Hoeffding’s Lemma)

Taking expectations of both sides, we see that

E [exp (s · (Yn − Y0))] ≤ exp

(
c2ns

2

2

)
· E [exp (s · (Yn−1 − Y0))] .

Since this holds for all n, by induction, it follows that the moment generating function of Yn − Y0

is bounded as

E [exp (s · (Yn − Y0))] ≤ exp

(
s2 ·

∑n
k=1 c

2
k

2

)
, ∀s ∈ R.

Applying Markov’s Inequality in the usual way and optimizing over s ∈ R yields the desired
bound.

3 Concentration for Lipschitz Functions
Let us see how to use Theorem 2.2 to derive concentration for general functions of independent
random variables which are Lipschitz in a precise sense.

Theorem 3.1 (McDiarmid’s Inequality). Let X1, . . . , Xn be a collection of independent real-valued
random variables. Suppose f : Rn → R which is L-Lipschitz with respect Hamming distance on
Rn, i.e. for all x,y ∈ Rn

|f(x)− f(y)| ≤ L ·#{i ∈ [n] : xi ̸= yi}.

Then for every t ≥ 0,

Pr [f(X)− E[f(X)] ≥ t] ≤ exp

(
− t2

2L2n

)
.

Remark 4. This result can be generalized to allow for arbitrary (Cartesian) product spaces X1×· · ·×
Xn, where Xk is independently sampled from Xk for each k (e.g. {±1},R,N,Fp, etc.). Furthermore,
Lipschitzness with respect to Hamming distance can be relaxed to the bounded differences property,
which is essentially Lipschitzness with respect to weighted Hamming metrics:

|f(x)− f(y)| ≤
n∑

i=1

ci · 1[xi ̸= yi],

for some positive constants c1, . . . , cn > 0. In this more general setting, one simply replaces L2n
in the tail bound with

∑n
i=1 c

2
i . Moreover, one can replace the factor of 1

2 by 2 in the exponential.
Remark 5. There are various other concentration inequalities which hold with a different notion
of Lipschitzness. For instance, the Gaussian concentration inequality states that if X is a vector
of i.i.d. standard Gaussians in Rn, and f : Rn → R is L-Lipschitz with respect to the standard
Euclidean norm on Rn, then

Pr [|f(X)− E[f(X)]| ≥ t] ≤ 2 exp

(
− t2

2L2

)
.

We will treat such inequalities much more systematically later in the course.
Remark 6. McDiarmid’s Inequality is sharp for linear Lipschitz functionals (e.g. sums of bounded
random variables). However, it becomes lossy for nonlinear Lipschitz functions. One example we’ll
see in a future lecture is triangle counts in G(n, p). In our application to stochastic Euclidean TSP
below, we’ll also see that a direct application of Theorem 3.1 is suboptimal. We note that there
has been beautiful recent developments in the area of nonlinear large deviations, which aims to
develop sharp tail estimates; see e.g. [CD16; Eld18].
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Proof of Theorem 3.1. Consider the Doob martingale Yk = E[f(X1, . . . , Xn) | X1, . . . , Xk] for
k = 0, . . . , n; this is the same martingale as the one we discussed in Section 1.1 and Lemma 1.1.
We have Yn = f(X) while Y0 = E[f(X)]. Moreover, L-Lipschitzness of f with respect to Hamming
distance, combined with independence of X1, . . . , Xn, implies that the increments are bounded as
|Yk − Yk−1| ≤ L almost surely for all k = 1, . . . , n. The claim is then an immediate consequence
of Theorem 2.2.

4 Concentration for the Chromatic Number of Erdös–Rényi
Recall that for a graph G = (V,E) and a positive integer q ∈ N, a (proper) q-coloring is a mapping
σ : V → [q] = {1, . . . , q} such that for every edge uv ∈ E, we have σ(u) ̸= σ(v). We write χ(G)
for the smallest q such that G admits a proper q-coloring. In this section, we consider the dense
Erdös–Rényi random graph, i.e. G(n, p) where p is a constant independent of n. We will establish
sharp concentration estimates for its chromatic number. We begin with a simple lower bound on
its expectation.

Fact 4.1. For any constant p > 0, we have the lower bound E [χ (G(n, p))] ≥ Ωp

(
n

logn

)
.

Here, by Ωp(·), we mean the lower bound is up to constants depending on p. The key observation
behind its proof is that in any proper q-coloring σ : V → [q], every color class σ−1(c), where c ∈ [q],
must be an independent set. Hence, we must have the lower bound

q ≥ n

|Maximum Independent Set|
.

In G(n, p), one can upper bound the size of the maximum independent set by Op (log n) using the
first moment method. In a future lecture, we will discuss the size of the maximum independent
set of dense Erdös–Rényi in greater depth. We also note that sharper results are known for the
chromatic number. Again, writing A = (1 ± ϵ)B to mean (1 − ϵ)B ≤ A ≤ (1 + ϵ)B for positive
quantities A,B > 0, we have

E [χ (G(n, p))] = (1± o(1)) · n

2 log 1
1−p

n
.

Now, let us turn to concentration around its expectation.

Theorem 4.2. For any constant p > 0 and any 0 < ϵ < 1, we have

Pr [χ (G(n, p)) /∈ (1± ϵ) · E [χ (G(n, p))]] ≤ 2 · exp
(
−Op

(
ϵ2 · n
log2 n

))
.

Proof. Our goal is to leverage McDiarmid’s Inequality (see Theorem 3.1). Perhaps the most imme-
diate way to do this is to use the fact that χ : 2(

[n]
2 ) → N is 1-Lipschitz with respect to Hamming

distance on 2(
[n]
2 ); this corresponds to the edge exposure martingale we discussed above. Indeed,

if one adds an edge to a graph, then the chromatic number can increase by at most 1, since one
could take any previously valid coloring, and color one of the endpoints of the new edge with a
new color. This same argument shows that by removing an edge, the chromatic number can de-
crease by at most 1. However, because there are

(
n
2

)
independent {0, 1}-valued random variables

(corresponding to possible edges), McDiarmid’s Inequality combined with Fact 4.1 only yields a
tail bound of the form

2 · exp
(
−Op

(
ϵ2

log2 n

))
,

which tends to 1 as n → ∞. Unfortunately, this is not a very meaningful bound.
The main reason the above approach failed was because we were viewing χ as a function of too

many independent random variables. To reduce the number of inputs, we use the vertex exposure
martingale instead. Arbitrarily fix some ordering of the vertices v1, . . . , vn, and for each 1 ≤ t ≤ n,
let Et = {vivt ∈ E : 1 ≤ i ≤ t− 1} denote the set of edges connecting vt to the preceding vertices
v1, . . . , vt−1. E1, . . . , En are independent because they are determined by statuses of disjoint sets
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of vertex pairs. Moreover, fixing the values of E1, . . . , En uniquely determines the graph, and so
we may view χ as a function of these variables.

Now, χ remains 1-Lipschitz with respect this choice of inputs, i.e. by arbitrarily changing Et

for any single 1 ≤ t ≤ n, the chromatic number can change by at most 1. To see this, observe
that the chromatic number of G is always upper bounded (resp. lower bounded) by the chromatic
number of the graph formed by taking G and adding (resp. removing) all possible edges to vt. But
these upper and lower bounds can differ by at most one, since we can take a proper coloring of the
graph with fewer edges, and introduce a single new color just for the vertex vt. Since we now only
have n independent random variables in the input to χ, McDiarmid’s Inequality combined with
Fact 4.1 immediately yields the desired conclusion.
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A A Brief Measure-Theoretic Treatment of Martingales
Recall that a probability space is a triple (Ω,F , µ), where

• Ω is some state space (e.g. {±1}n or Rn),

• F is a σ-algebra, i.e. a family of subsets of Ω (called the measurable sets or events) which is
closed under complements and countable unions, and

• µ : F → [0, 1] is a probability measure, i.e. a function such that µ(Ω) = 1 and µ (
⋃∞

k=0 Ek) =∑∞
k=0 µ(Ek) for any countable collection of mutually exclusive events {Ek}∞k=0.

Also recall that a random variable is a function X : Ω → Σ, where (Σ,G) is some other measurable
space (often R equipped with Lebesgue measurable sets), which is measurable, i.e. the preimage
X−1(B) is F-measurable for any G-measurable B. Note that given a measurable space (Σ,G) and
a function X : Ω → Σ, one can define the σ-algebra σ(X) generated by X as the smallest σ-algebra
containing the sets X−1(B) for every B ∈ G.

Finally, recall that if F ′ ⊆ F is a sub-σ-algebra and X : Ω → R is F-measurable, then we say
a F ′-measurable function X ′ : Ω → R is a conditional expectation if it satisfies∫

A

X ′ dµ =

∫
A

X dµ, ∀A ∈ F ′.

Often, we will simply write E[X | F ′] for such a conditional expectation when it is clear from
context.

Definition 2 (Filtration). For a probability space (Ω,F , µ), a filtration is a sequence of σ-algebras
{Fn}n≥0 which is nested (or increasing):

F0 ⊆ F1 ⊆ · · · ⊆ F∞
def
= σ

( ∞⋃
n=0

Fn

)
⊆ F .

For instance, if {Xn}∞n=0 is a sequence of real-valued random variables, then they generate a filtra-
tion via Fn

def
= σ (X0, . . . , Xn) for every n.

It is easiest to get handle on all this abstract nonsense by looking at a concrete example.
Suppose Ω = {±1}n, F is the collection of all subsets of Ω, and µ is any probability measure. If
we let Xk : {±1}n → R be the function which outputs the kth coordinate of its input, then the
σ-algebra Fk = σ(X1, . . . , Xk) consists of subcubes:

{(x1, . . . , xk, xk+1, . . . , xn) ∈ {±1}n : xk+1, . . . , xn ∈ {±1}}, ∀(x1, . . . , xk) ∈ {±1}k.
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Thus, the filtration {Fk}nk=0 describes the process of revealing the values of the first k coordinates
for some k.

In general, if X ∈ Ω is drawn from µ, then we can “reveal information about X” by enforcing
that X land in some set which is measurable with respect to a sub-σ-algebra F ′ (e.g. the first k
coordinates of X equal some fixed x1, . . . , xk). A filtration then gives a formal way of “zooming
in” on the full description of X. If we additionally have a function f : Ω → R, then looking at
conditional expectations of f with respect to successive σ-algebras in a filtration gives a systematic
way of “zooming in” on f(X).

We now define martingales in the language of measure theory.

Definition 3 (Martingale). Fix a probability space (Ω,F , µ) and a filtration {Fn}n≥0. We say a
sequence of real-valued random variables {Yn}n≥0 is adapted to {Fn}n≥0 if Yn is a Fn-measurable
function for every n. We say {Yn}n≥0 is a martingale with respect to {Fn}n≥0 if

• {Yn}n≥0 is adapted to {Fn}n≥0,

• E [|Yn|] < ∞ for all n, and

• E [Yn | Fn−1] = Yn−1 for all n.

Note that if Yn is measurable with respect to σ(X0, . . . , Xn), then it means that specifying the
values of X0, . . . , Xn completely determines the value of Yn.
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