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1 Weaknesses of Chernoff–Hoeffding
In the previous lecture, we looked at sub-Gaussian random variables and established various tail
bounds for them. However, many important and natural random variables are emphatically not
sub-Gaussian. Simple examples include the Laplace (or symmetric exponential) distribution Lap(λ)
for λ > 0, which has density x 7→ λ

2 e
−λ·|x| for x ∈ R, and the Poisson distribution Poi(λ) with

mean λ > 0, which has probability mass function k 7→ λke−λ

k! for k ∈ N. Yet, we still would like
general-purpose concentration inequalities which apply to such random variables.

To illustrate the weakness of Chernoff–Hoeffding for such random variables, consider a collection
of n independent Bernoulli random variables X1, . . . , Xn ∼ Ber(p) where p = d/n for a constant
d independent of n. Their sum Sn = X1 + · · · + Xn is distributed as a binomial distribution
Bin(n, d/n), which as we will show later in this lecture, converges to Poi(d) in the limit as n → ∞;
the Central Limit Theorem doesn’t apply because the distribution of each Xi depends on n. As
we previously mentioned, Sn has the same law as the degree of a vertex in the sparse Erdös–Rényi
random graph G(n+ 1, d/n).

Now if we apply Chernoff–Hoeffding to Sn, we would obtain

Pr [Sn − d ≥ t] ≤ exp

(
−2t2

n

)
.

This tells us that Sn is at most d + O (
√
n) with constant probability, which is useless since d is

constant independent of n. Chebyshev already tells us that Sn ≤ d+O
(√

d
)

with 99% probability,

since Var (Sn) = d
(
1− d

n

)
. The correct behavior is captured by the tails of Poi(d). One reason

Chernoff–Hoeffding fails is that it only uses independence and boundedness of the random variables
X1, . . . , Xn; it doesn’t use the crucial fact that most of the Xi are typically 0.

Notably, the situation cannot be remedied by replacing boundedness of the Xi with their
variance proxy/sub-Gaussian norm. For Ber(d/n), one can see this via a direct calculation, but
this is a symptom of a more general phenomenon. Namely, for distributions with tails as heavier
than Gaussians, the moment generating function can be rather ill-behaved. To illustrate an extreme
example, observe that the moment generating function for the Laplace distribution Lap(λ) with
density x 7→ λ

2 e
−λ·|x| is

EX∼Lap(λ) [exp (s ·X)] =
1

1−
(
s
λ

)2 , ∀ |s| < λ,

which has poles at s = ±λ. Hence, one cannot hope to bound such a function by a function of the
form exp

(
K2s2

)
, which is finite for all s ∈ R.
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2 Sub-Exponential Random Variables
To capture random variables with heavier tails, we define the class of sub-exponential random
variables. Like the sub-Gaussian case, there are multiple equivalent definitions.

Proposition 2.1 (Sub-Exponential Distributions; see e.g. [Ver18]). We say a random variable X
is sub-exponential if it satisfies any one of the following definitions, which are all equivalent up to
rescaling the corresponding factors K1, . . . ,K5 by universal numerical constants:

1. The tails of X are upper bounded by exponential tails, i.e. there exists K1 > 0 such that

Pr [|X| ≥ t] ≤ 2 exp (−t/K1) , ∀t ≥ 0.

2. The (absolute) moments of X are uniformly bounded by the moments of an exponential
distribution, i.e. there exists K2 > 0 such that

E [|X|p]1/p ≤ K2 · p.

3. The moment generating function of |X| is upper bounded by an exponential function, i.e.
there exists K3 > 0 such that

E (exp (s |X|)) ≤ exp (K3s) , ∀s ∈
[
0,

1

K3

]
.

4. The moment generating function of |X| is upper bounded at some point, i.e. there exists
K4 > 0 such that E [exp (|X| /K4)] ≤ 2.

5. The moment generating function of the centered random variable X −E[X] is upper bounded
by the moment generating function of a Gaussian in an interval, i.e. there exists K5 > 0
such that

E [exp (s · (X − E[X]))] ≤ exp
(
K2

5s
2
)
, ∀s ∈

[
− 1

K5
,
1

K5

]
.

Remark 1. The fifth condition is eerily similar to the fifth condition for sub-Gaussianity. The
only difference lies in the restriction on the range of s. Unlike the sub-exponential case, for sub-
Gaussian random variables, we require the inequality to hold for all s ∈ R. However, as we saw
for the Laplace distribution, the moment generating function of a sub-exponential random variable
can explode at two poles. Hence, we can only hope for a bound in a neighborhood of the origin.

As before, we omit the proof as it is conceptually straightforward and relies entirely on calcu-
lations. Given these equivalent definitions, we can also quantify “how sub-exponential” a random
variable is.

Definition 1 (Sub-Exponential Norm). For a sub-exponential random variable X, we define its
sub-exponential norm as the quantity

∥X∥ψ1

def
= inf {K > 0 : E [exp (|X| /K)] ≤ 2} .

Lemma 2.2. A random variable X is sub-Gaussian if and only if X2 is sub-exponential. Moreover,
∥X∥2ψ2

=
∥∥X2

∥∥
ψ1

.

Proof. This is immediate from the definitions.

3 Concentration for Sub-Exponential Processes
Now let us establish a concentration inequality for linear functionals of sub-exponential processes.
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Theorem 3.1 (Bernstein’s Inequality). There exists a universal numerical constant C > 0 such
that for any collection X1, . . . , Xn of independent sub-exponential random variables and any v ∈
Rn, the random variable Y =

∑n
i=1 viXi satisfies the tail bound

Pr [Y − E[Y ] ≥ t] ≤ exp

(
− 1

2C
·min

{
t2

2C ·
∑n
i=1 v

2
i ∥Xi∥2ψ1

,
t

maxi=1,...,n |vi| · ∥Xi∥ψ1

})
.

Very roughly speaking, one way to parse this bound is that there are two possible ways Y
could deviate significantly from its expectation. The first possibility is that the “local deviations”
Xi − E[Xi] all have the same sign, which then aggregate into a large deviation for Y . However,
independence of the random variables makes this unlikely, leading to the first Gaussian-like term.
A second possibility is that a single “local deviation” Xi − E[Xi] is large and contributes the bulk
of the overall deviation Y − E[Y ]. This is “only exponentially unlikely” because we assumed the
Xi are sub-exponential, not sub-Gaussian, and so this gives rise to the second exponential term in
the minimum.

Proof of Theorem 3.1. As before, let us bound the moment generating function of Y − E[Y ]. By
Proposition 2.1, there exists a universal numerical constant c > 0 such that for

K
def
= max

i=1,...,n

{
|vi| · ∥Xi∥ψ1

}
σ̂2 def

=

n∑
i=1

v2
i ∥Xi∥2ψ1

,

and any s ∈
[
− 1
C·K , 1

C·K
]
,

E [exp (s · (Y − E[Y ]))] =

n∏
i=1

exp (s · vi · (Xi − E[Xi])) (Independence)

≤
n∏
i=1

exp
(
C2v2

i ∥Xi∥2ψ1
s2
)

(Using Proposition 2.1)

= exp
(
C2σ̂2s2

)
.

It follows by Markov’s Inequality that

Pr [Y − E[Y ] ≥ t] = inf
s∈[− 1

C·K , 1
C·K ]

Pr
[
exp (s · (Y − E[Y ])) ≥ es·t

]
≤ inf
s∈[− 1

C·K , 1
C·K ]

exp
(
−st+ C2σ̂2s2

)
.

The infimum is attained at s = min
{

t
2c2σ̂2 ,

1
c·K
}
. If t is such that s = t

2c2σ̂2 , then we obtain the first

bound of exp
(
− t2

4C2σ̂2

)
as usual. On the other hand, if t is such that s = 1

C·K , then t
2C2σ̂2 ≥ 1

C·K ,

or equivalently, σ̂2

K2 ≤ t
2C·K . Plugging in 1

C·K into −st+C2σ̂2s2 gives − t
C·K + σ̂2

K2 ≤ − t
2C·K , which

then yields the second bound of exp
(
− t

2C·K
)
.

We highlight another version of Bernstein’s Inequality for bounded random variables, whose
proof we omit (note that the extra constant factors depending on C > 0 can be removed using
more optimized arguments).

Theorem 3.2. Let X1, . . . , Xn be independent mean-zero random variables which are bounded in
the interval [−K,K] almost surely. If Sn =

∑n
i=1 Xi and σ2 = Var (Sn) =

∑n
i=1 Var (Xi), then

Pr [Sn ≥ t] ≤ exp

(
− t2/2

σ2 + (Kt/3)

)
.

Let us return to the case where X1, . . . , Xn are i.i.d. Ber(d/n) random variables. We may apply
Theorem 3.2 to obtain that for Sn ∼ Bin(n, d/n),

Pr [|Sn − d| ≥ t] ≤ 2 exp

(
− t2/2

d+ (t/3)

)
.

This is almost the correct behavior. Indeed, the above is meaningful even for t = Θ
(√

d
)
. More-

over, if we plug in t = αd for constant α, then the above yields an upper bound of exp (−Cαd) on
the probability, while the correct Poisson tail yields exp (−αd logα).
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3.1 Thin Shell Concentration
Let us now use Bernstein’s Inequality to study the norm of a sub-Gaussian random vector. In the
previous lecture, we saw that if the entries are independent, mean-zero and O(1)-sub-Gaussian,
then the norm is at most O (

√
n) with overwhelming probability. Here, we show extremely strong

concentration around
√
n, provided the entries are normalized to have unit variance.

Proposition 3.3. Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent mean-zero
unit-variance sub-Gaussian entries. Then there exists a universal numerical constant C > 0 such
that for σ̂2 = maxi=1,...,n ∥Xi∥2ψ2

, ∥∥∥X∥2 −
√
n
∥∥
ψ2

≤ Cσ̂2.

Before we prove this, think about what this statement implies. It means that if the entries of
X are O(1)-sub-Gaussian (e.g. you sample X ∼ N (0, In)), then the fluctuations of ∥X∥2 around√
n is of size O(1), with no dependence on n whatsoever! In particular, 99.99% of the probability

mass of a sub-Gaussian distribution is contained in a thin shell of constant thickness:{
x ∈ Rn :

√
n− c ≤ ∥x∥2 ≤

√
n+ c

}
.

At first glance, this may seem like impossibly strong concentration. However, here’s a simple back-
of-the-envelope calculation which demystifies this. We know that ∥X∥22 has mean n, and a quick
calculation leveraging independence and sub-Gaussianity shows its standard deviation is of order√
n.1 Hence, writing x = y ± δ to mean x ∈ [y − δ, y + δ], we have

∥X∥22 “ = ”n±O
(√

n
)

=⇒ ∥X∥2 “ = ”
√
n±O

(√
n
)
“ = ”

√
n±O(1).

Remark 2. The famous Thin Shell Conjecture is asymptotic convex geometry asserts that for any
isotropic (i.e. zero-mean, identity covariance) and log-concave probability measure µ on Rn, the
tails of |∥X∥2 −

√
n| are subexponential for X ∼ µ. In recent years, there has been a surge of

progress on this and a whole host of interconnected conjectures. We refer interested readers to
[Eld13; LV17; LV18; Che21; KL22; Gua24; KL24].

Proof of Proposition 3.3. The idea is that by assumption, for each i = 1, . . . , n, the random variable
X2
i − 1 is sub-exponential, and so we can apply Bernstein’s Inequality to get an exponential tail

for the deviation of ∥X∥22 from n. Taking a square root then gives a sub-Gaussian tail. Indeed, if
Y is a sub-exponential random variable, then

Pr
[√

|Y | ≥ t
]
= Pr

[
|Y | ≥ t2

]
≤ 2 exp

(
−t2/ ∥Y ∥ψ1

)
,

so
√

|Y | has a sub-Gaussian tail.
To formalize everything, we leverage an intermediate lemma.

Claim 3.4. There exists a universal numerical constant C > 0 such that
∥∥X2

i − 1
∥∥
ψ1

≤ C ∥Xi∥2ψ2
.

Proof. Proposition 2.1 and the definition of ∥·∥ψ1
imply that

∥∥X2
i − 1

∥∥
ψ1

≤ C
∥∥X2

i

∥∥
ψ1

for some
C > 0. Applying Lemma 2.2 completes the proof.

Returning to the Euclidean norm, we combine Claim 3.4 with Bernstein’s Inequality (see The-
orem 3.1) to obtain

Pr

[∣∣∣∣ 1n ∥X∥22 − 1

∣∣∣∣ ≥ t

]
≤ 2 exp

(
−L · n

σ̂2
·min

{
t2

σ̂2
, t

})
≤ 2 exp

(
−L′ · n

σ̂4
·min

{
t2, t

})
for some universal numerical constants L,L′ > 0; note that in the second step, we used the fact
that Var(Xi) = 1 for all i implies σ̂2 is lower bounded by some universal numerical constant (see
the previous lecture).

1Observe that Var
(
∥X∥22

)
=

∑n
i=1 Var

(
X2

i

)
≤ O(n).
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Let’s now translate this into a bound on the tail of
∣∣∣ 1√

n
∥X∥2 − 1

∣∣∣. Observe that if x ≥ 0

satisfies |x− 1| ≥ s, then
∣∣x2 − 1

∣∣ ≥ max{s, s2}; this can be verified by separately checking the
case x ≤ max{0, 1− s} and the case x ≥ 1 + s. It follows that

Pr

[∣∣∣∣ 1√
n
∥X∥2 − 1

∣∣∣∣ ≥ s

]
≤ Pr

[∣∣∣∣ 1n ∥X∥22 − 1

∣∣∣∣ ≥ max{s, s2}
]

≤ 2 exp

(
− L′ · n

σ̂4
·min

{
max{s2, s4},max{s, s2}

}︸ ︷︷ ︸
=s2 (check s>1 and s<1 separately)

)

= 2 exp

(
−L′ · n

σ̂4
· s2
)
.

Substituting t = s ·
√
n back in, we obtain

Pr
[∣∣∥X∥2 −

√
n
∣∣ ≥ t

]
≤ 2 exp

(
−O

(
t2

σ̂4

))
, ∀t ≥ 0.

This implies that ∥∥X∥2 −
√
n∥

ψ2
≲ σ̂2 as desired.

4 The Poisson Limit of Sparse Binomials
To conclude this lecture, we prove that Bin(n, d/n) is approximately Poi(d) in the large n limit for
constant d. To formalize this, let us recall that for two probability measures µ, ν on a common
state space Ω, their total variation distance is

∥µ− ν∥TV
def
=

1

2

∑
ω∈Ω

|µ(ω)− ν(ω)| .

We bound the total variation distance between Bin(n, d/n) and Poi(d) by O(1/n).

Theorem 4.1 (Binomial–Poisson Approximation). For any d ∈ R≥0 and n ∈ N, we have

∥Bin(n, d/n)− Poi(d)∥TV ≤ d2

n
.

4.1 The Coupling Interpretation of Total Variation
We previously saw that total variation distance can be interpreted through the lens of test functions
which “distinguish” µ from ν; more specifically, ∥µ− ν∥TV = supf :Ω→[0,1] |Eµ[f ]− Eν [f ]|. Towards
proving Theorem 4.1, we introduce a “dual” interpretation of the total variation distance based on
coupling.

Definition 2 (Coupling). Let µ, ν be probability measures on Ω,Σ, respectively. A coupling of µ, ν
is a probability measure ξ on Ω× Σ such that

µ(x) =
∑
y∈Σ

ξ(x, y), ∀x ∈ Ω

ν(y) =
∑
x∈Ω

ξ(x, y), ∀y ∈ Σ.

In other words, the marginals of ξ on each coordinate are precisely µ, ν, respectively.

One way to think about a coupling is through matrices. If we view µ, ν as vectors in RΩ, then
ξ is a matrix in RΩ×Ω such that the rows of ξ sum to µ, and the columns of ξ sum to ν.

Probabilistically, one should think of a coupling of µ, ν as a method for sampling a (possibly
correlated, or “coupled”) pair of random variables (X,Y ) such that Law(X) = µ (ignoring Y ),
and Law(Y ) = ν (ignoring X). Couplings always exist, since we always have the product measure
(µ ⊗ ν)(x, y)

def
= µ(x) · ν(y), where we simply sample X ∼ µ, Y ∼ ν independently. If µ = ν, then

we also have the identity coupling, where ξ(x, x) = µ(x) = ν(x) for all x, and ξ(x, y) = 0 for all
x ̸= y. Algorithmically, we just sample X ∼ µ and output two copies (X,X). Let us see how to
optimally couple two coins with different biases.
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Example 1. Fix p, q ∈ [0, 1], and assume p ≤ q without loss of generality. We may couple X ∼
Ber(p) and Y ∼ Ber(q) as follows: First, sample U ∼ Unif[0, 1]. Then, output

(X,Y ) =


(1, 1), if 0 ≤ U ≤ p

(0, 1), if p < U ≤ q

(0, 0), if q < U ≤ 1

.

Clearly, Pr[X = 1] = p and Pr[Y = 1] = q. When p = q, then Pr[X = Y ] = 1 and the two coins
are maximally correlated. On the other hand, if p ̸= q, then Pr[X ̸= Y ] = |p− q|.

Example 1 suggests that couplings can be used to quantify the distance between laws of random
variables. In fact, it turns out they are intimately connected to total variation distance. We have
already seen two equivalent definitions of the latter; the following lemma furnishes a third equivalent
definition.

Lemma 4.2 (Coupling Lemma). Let µ, ν be two probability distributions on a common state space
Ω. Then for any coupling ξ of µ, ν,

∥µ− ν∥TV ≤ Pr
(X,Y )∼ξ

[X ̸= Y ].

Moreover, there exists a coupling, colloquially referred to as the TV-optimal coupling, which
achieves equality.

Remark 3. The Coupling Lemma allows one to interpret the total variation distance as a trans-
portation distance, which are fundamental to the theory of optimal transport. Furthermore, equality
of the characterizations based on test functions and couplings can be interpreted through the lens
of linear programming duality.

For the moment, we focus only on the upper bound, and defer the proof of TV-optimality to
Appendix A.

Proof of the Upper Bound. Because ξ is a coupling, ξ(x, x) ≤ min{µ(x), ν(x)} for all x ∈ Ω. It
follows that

Pr
(X,Y )∼ξ

[X = Y ] =
∑
x∈Ω

ξ(x, x) ≤
∑
x∈Ω

min{µ(x), ν(x)}.

On the other hand,

∥µ− ν∥TV =
∑

x:µ(x)≥ν(x)

(µ(x)− ν(x)) =
∑
x∈Ω

(µ(x)−min{µ(x), ν(x)}) = 1−
∑
x∈Ω

min{µ(x), ν(x)}.

Combining the preceding two displays concludes the proof.

4.2 Proof of Theorem 4.1
To bound the total variation distance, recall that X ∼ Bin(n, d/n) can be decomposed as a sum of
n independent random variables X1, . . . , Xn ∼ Ber(d/n). It turns out any Poisson random variable
can be decomposed in a similar way.

Lemma 4.3. If Y1 ∼ Poi(λ1), Y2 ∼ Poi(λ2) are independent, then Y1 + Y2 ∼ Poi(λ1 + λ2).

In particular, we can decompose Y ∼ Poi(d) as Y =
∑n
i=1 Yi for independent Y1, . . . , Yn ∼

Poi(d/n). The proof of Lemma 4.3 is a straightforward exercise in calculus.
Now, observe that any coupling of Xi ∼ Ber(d/n) with Yi ∼ Poi(d) for each i = 1, . . . , n

naturally induces a coupling of X ∼ Bin(n, d/n), Y ∼ Poi(d). In particular, if we use the TV-
optimal coupling between Xi, Yi, then

∥Bin(n, d/n)− Poi(d)∥TV ≤ Pr [X ̸= Y ] (Coupling Lemma; see Lemma 4.2)
≤ Pr [∃i s.t. Xi ̸= Yi] (If Xi = Yi for all i, then X = Y )

≤
n∑
i=1

Pr [Xi ̸= Yi] (Union Bound)

= n · ∥Ber(d/n)− Poi(d/n)∥TV (TV-optimality of the coupling)
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Hence, it suffices to upper bound ∥Ber(d/n)− Poi(d/n)∥TV. A short calculation employing the
ℓ1-viewpoint of total variation reveals that

∥Ber(d/n)− Poi(d/n)∥TV =
d

n

(
1− e−d/n

)
≤ d2

n2
,

where in the final step, we used 1−x ≤ e−x for x ∈ R. A coupling of Ber(d/n),Poi(d/n) achieving
the above identity is given by

Pr [X = x, Y = y] =


1− d

n , if x = y = 0

e−d/n −
(
1− d

n

)
, if x = 1, y = 0

(d/n)ye−d/n

y! , if x = 1, y ≥ 1

.

Remark 4. This proof (and the statement of Theorem 4.1) can be easily generalized to bound
the total variation distance between Poi (

∑n
i=1 pi) and Law (

∑n
i=1 Xi), where Xi ∼ Ber(pi) are

independently drawn. The corresponding bound becomes
∑n
i=1 p

2
i , a result known as Le Cam’s

Inequality.

References
[Che21] Yuansi Chen. “An Almost Constant Lower Bound of the Isoperimetric Coefficient in the

KLS Conjecture”. In: Geometric and Functional Analysis 31 (2021), pp. 34–61 (cit. on
p. 4).

[Eld13] Ronen Eldan. “Thin Shell Implies Spectral Gap Up to Polylog via a Stochastic Local-
ization Scheme”. In: Geometric and Functional Analysis 23 (2013), pp. 532–569 (cit. on
p. 4).

[Gua24] Qing-Yang Guan. “A note on Bourgain’s slicing problem”. In: arXiv preprint arXiv:2412.09075
(2024) (cit. on p. 4).

[KL22] Bo’az Klartag and Joseph Lehec. “Bourgain’s slicing problem and KLS isoperimetry up
to polylog”. In: arXiv preprint arXiv:2203.15551 (2022) (cit. on p. 4).

[KL24] Boaz Klartag and Joseph Lehec. “Affirmative Resolution of Bourgain’s Slicing Problem
using Guan’s Bound”. In: arXiv preprint arXiv:2412.15044 (2024) (cit. on p. 4).

[LV17] Yin Tat Lee and Santosh Srinivas Vempala. “Eldan’s Stochastic Localization and the
KLS Hyperplane Conjecture: An Improved Lower Bound for Expansion”. In: 2017 IEEE
58th Annual Symposium on Foundations of Computer Science (FOCS). 2017, pp. 998–
1007. doi: 10.1109/FOCS.2017.96 (cit. on p. 4).

[LV18] Yin Tat Lee and Santosh S. Vempala. “Stochastic Localization + Stieltjes Barrier = Tight
Bound for Log-Sobolev”. In: Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing. STOC 2018. Los Angeles, CA, USA: Association for Computing
Machinery, 2018, pp. 1122–1129. isbn: 9781450355599. doi: 10.1145/3188745.3188866
(cit. on p. 4).

[Ver18] Roman Vershynin. High-Dimensional Probability. An Introduction with Applications in
Data Science. Cambridge University Press, 2018 (cit. on p. 2).

A Existence of a TV-Optimal Coupling
To construct a TV-optimal coupling, note that any such coupling must saturate the only inequality
we used in the proof of the upper bound in Lemma 4.2, i.e. we must ensure that ξ(x, x) =
min{µ(x), ν(x)} for all x ∈ Ω. At this point, I could just hand you a clean formula and save all
of us some pain (see Remark 5). Here is how one could try to reason about it step by step. Let
A = {x : µ(x) > ν(x)}, B = {x : ν(x) > µ(x)} and C = {x : µ(x) = ν(x)}. Then, as a Ω × Ω
matrix with rows summing to µ and columns summing to ν, we need ξ to have the following block
structure:

1. Along the diagonal blocks A × A, B × B and C × C, we have diagonal entries ξ(x, x) =
min{µ(x), ν(x)}. The off-diagonal entries for these blocks must all be zero since one of the
marginal distributions must be saturated.
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2. The blocks A×C, B×C, C×A and C×B must all be zero both marginals µ, ν have already
been saturated by the C × C block. Similarly, the B ×A block must be zero.

ξ =

A B C( )
diag ??? 0 A
0 diag 0 B
0 0 diag C

Thus, the only freedom we have in choosing our optimal coupling is designing the A×B submatrix
of ξ such that

µ(x)− ν(x) =
∑
y∈B

ξ(x, y), ∀x ∈ A

ν(y)− µ(y) =
∑
x∈A

ξ(x, y), ∀y ∈ B.

Since µ(A)− ν(A) = ν(B)− µ(B), such a submatrix is always possible. For instance, one can sort
A in increasing order of µ(x)−ν(x), sort B analogously, and inductively build a triangular matrix.

Remark 5. Here is a formula for such an optimal coupling. Take ξ(x, x) = min{µ(x), ν(x)} for all
x ∈ Ω, and for x ̸= y, set

ξ(x, y) =
(µ(x)− ξ(x, x)) · (ν(y)− ξ(y, y))

1−
∑
z∈Ω ξ(z, z)

.
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