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cations. If you do spot an error, please contact the instructor.

1 Concentration Beyond Bounded Random Variables
Our aim in this lecture is begin the process of deriving progressively more and more general
Chernoff-type bounds. To do this, we define a class of random variables which “behave like Gaus-
sians” in terms of how well they concentrate. These are known as sub-Gaussian random variables,
and appear in a wide variety of applications.

Proposition 1.1 (Sub-Gaussian Distributions; see e.g. [Ver18]). We say a random variable X
is sub-Gaussian if it satisfies any one of the following definitions, which are all equivalent up to
rescaling the corresponding factors K1, . . . ,K5 by universal numerical constants:

1. The tails of X are upper bounded by Gaussian tails, i.e. there exists K1 > 0 such that

Pr [|X| ≥ t] ≤ 2 exp
(
−t2/K2

1

)
, ∀t ≥ 0.

2. The (absolute) moments of X are uniformly bounded by the moments of a Gaussian, i.e.
there exists K2 > 0 such that

E [|X|p]1/p ≤ K2 ·
√
p.

3. The moment generating function of X2 is upper bounded by the moment generating function
of a Gaussian, i.e. there exists K3 > 0 such that

E
(
exp

(
s2X2

))
≤ exp

(
K2

3s
2
)
, ∀s ∈

[
− 1

K3
,
1

K3

]
.

4. The moment generating function of X2 is upper bounded at some point, i.e. there exists
K4 > 0 such that E

[
exp

(
X2/K2

4

)]
≤ 2.

5. The moment generating function of the centered random variable X −E[X] is upper bounded
by the moment generating function of a Gaussian, i.e. there exists K5 > 0 such that

E [exp (s · (X − E[X]))] ≤ exp
(
K2

5s
2
)
, ∀s ∈ R.

We omit the proof as it is conceptually straightforward and relies entirely on calculations;
see e.g. [Ver18]. The utility of Proposition 1.1 is that it gives us different ways of viewing sub-
Gaussianity, some of which may be more convenient to use depending on the application. It also
gives us useful ways of quantifying “how sub-Gaussian” a random variable is.

Definition 1 (Sub-Gaussian Norm). For a sub-Gaussian random variable X, we define its sub-
Gaussian norm as the quantity

∥X∥ψ2

def
= inf

{
K > 0 : E

[
exp

(
X2/K2

)]
≤ 2
}
.
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Definition 2 (Variance Proxy). For a sub-Gaussian random variable X, we define its optimal
variance proxy to be the quantity

∥X∥2VP
def
= inf

{
K2 > 0 : E [exp (s · (X − E[X]))] ≤ exp

(
K2s2

)
,∀s ∈ R

}
.

By the equivalence given by Proposition 1.1, we have ∥X∥ψ2
≍ ∥X∥VP. In this lecture, we’ll

mainly use ∥X∥VP as it tends to lead to cleaner expressions. However, we emphasize that any
expression involving the variance proxy can be replaced by the sub-Gaussian norm up to a mul-
tiplicative loss by a universal numerical constant. To get a sense of the scale of these quantities,
observe that the variance proxy and the sub-Gaussian norm are both bonafide upper bounds on
the true variance.

Lemma 1.2. For a sub-Gaussian random variable X, we have Var(X) ≤ ∥X∥2VP and Var(X) ≲
∥X∥2ψ2

.

This lemma is quite intuitive, since ∥X∥2ψ2
≤ K2 roughly meansX is “dominated” by a Gaussian

with variance K2. The proof is straightforward and provided in Appendix A. Let us now see a few
examples of sub-Gaussian random variables.
Example 1 (Gaussian Random Variables). If X ∼ N (0, σ2), then we have ∥X∥ψ2

≤ Cσ for some
constant C > 0, and ∥X∥2VP = σ2.
Example 2 (Rademacher Random Variables). If X ∼ Unif{±1}, then we have ∥X∥ψ2

≤ 1√
ln 2

and

∥X∥2VP ≤ 1.
Example 3 (Bounded Random Variables). If X takes values in the bounded interval [−a, a] almost
surely, then we have ∥X∥ψ2

≤ a√
ln 2

and ∥X∥2VP ≤ a2.

2 Concentration for Basic Functionals
The quantities ∥·∥ψ2

, ∥·∥VP behave well under natural operations like taking linear combinations of
random variables. This is illustrated in the following theorem, which significantly generalizes the
Chernoff–Hoeffding concentration inequality we stated in the previous lecture for bounded random
variables.

Theorem 2.1 (Generalized Chernoff–Hoeffding Inequality). Let X1, . . . , Xn be independent sub-
Gaussian random variables. Then for any v ∈ Rn,∥∥∥∥∥

n∑
i=1

viXi

∥∥∥∥∥
2

VP

≤
n∑
i=1

v2
i ∥Xi∥2VP ,

and the random variable Y =
∑n
i=1 viXi satisfies the tail bound

Pr [|Y − E[Y ]| ≥ t] ≤ 2 exp

(
− t2

2
∑n
i=1 v

2
i ∥Xi∥2VP

)
.

Proof. By assumption, we have

E [exp (s · (viXi − E[viXi]))] ≤ exp
(
v2
i ∥Xi∥2VP s

2
)
, ∀s ∈ R.

Multiplying both sides across i = 1, . . . , n, and then applying independence to push the product
inside the expectation in the left-hand side, we obtain the first inequality. The second claim is
then an immediate consequence of the standard application of Markov’s Inequality; one may also
invoke Proposition 1.1.

The previous result concerns linear functionals of sub-Gaussian vectors. Now let us turn to the
Euclidean norm.

Lemma 2.2. Let X1, . . . , Xn be independent sub-Gaussian random variables with variance proxy
σ̂2/n. Then there exist universal numerical constants C,α∗ > 0 such that the Euclidean norm of
the vector X = (X1, . . . , Xn) satisfies

Pr [∥X − E[X]∥2 ≥ α · σ̂] ≤ exp
(
−Cα2n

)
, ∀α > α∗.
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Remark 1. It is actually necessary that α exceed at least some universal constant α∗. Indeed, as we
will see in the next lecture, the random variable ∥X∥2 actually concentrates around its expectation
E [∥X∥2], and so an exponentially decaying bound Pr [∥X∥2 ≥ α · σ̂] cannot hold for arbitrarily
small α.

Proof. Proposition 1.1 ensures there exists a universal numerical constant L > 0 such that

E
[
exp

( n

Lσ̂2
(Xi − E[Xi])

2
)]

≤ 2, ∀i = 1, . . . , n.

By independence, it follows that

E
[
exp

( n

Lσ̂2
∥X − E[X]∥22

)]
≤ 2n.

Applying Markov’s Inequality, we obtain

Pr [∥X − E[X]∥ ≥ α · σ̂] ≤ 2n exp

(
−α

2n

L

)
.

Setting α∗ >
√
L ln 2 yields the claim.

Finally, let’s look at the ℓ∞-norm, or more generally, the supremum of a sub-Gaussian process.

Theorem 2.3. Let X1, . . . , Xn be mean-zero sub-Gaussian random variables satisfying ∥Xi∥2VP ≤
σ̂2 for all i = 1, . . . , n; note that they may be arbitrarily correlated. Then

Pr

[
max

i=1,...,n
Xi > t

]
≤ n exp

(
− t2

2σ̂2

)
, Pr

[
max

i=1,...,n
|Xi| > t

]
≤ 2n exp

(
− t2

2σ̂2

)
, ∀t > 0,

and

E
[

max
i=1,...,n

Xi

]
≤ σ̂ ·

√
2 lnn, E

[
max

i=1,...,n
|Xi|

]
≤ σ̂ ·

√
2 ln(2n).

Remark 2. Note that these bounds are essentially sharp in the case where all the random variables
are independent. In the other extreme, when the random variables are maximally correlated (e.g.
X1 = · · · = Xn), the extra multiplicative factors depending on n are completely unnecessary.
There is a beautiful theory of generic chaining which aims for more refined bounds based on the
correlation structure of the random variables X1, . . . , Xn; see [Tal14].

Proof. First, observe if we define n new random variables by setting Xn+i = −Xi for i = 1, . . . , n,
then maxi=1,...,n |Xi| = max1,...,2nXi. Hence, the inequalities regarding maxi=1,...,n |Xi| are imme-
diate consequences of the inequalities regarding maxi=1,...,nXi. For the first inequality, we combine
sub-Gaussianity with the Union Bound to obtain

Pr

[
max

i=1,...,n
Xi > t

]
= Pr

[
n⋃
i=1

{Xi > t}

]

≤
n∑
i=1

Pr [Xi > t] (Union Bound)

≤ n exp

(
− t2

2σ̂2

)
. (Using ∥Xi∥2VP ≤ σ̂2)

For the bound on the expectation, one way is to simply integrate the tail, leveraging the bound
in the preceding display for the large t regime, and the trivial upper bound of 1 for the small t
regime. Another way is to appeal to the moment generating function. Observe that for any t > 0,
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we have

E
[

max
i=1,...,n

Xi

]
=

1

t
E
[
ln exp

(
t · max

i=1,...,n
Xi

)]
≤ 1

t
lnE

[
max

i=1,...,n
exp (tXi)

]
(Jensen’s Inequality)

≤ 1

t
ln

n∑
i=1

E [exp (tXi)] (∗)

≤ lnn

t
+
σ̂2t

2
. (Sub-Gaussianity)

Balancing the two terms by setting t =
√

2 lnn
σ̂2 yields the desired bound. All that remains is to

justify (∗), which can be achieved by applying the Union Bound. In particular, using the layered
cake representation1 for the expectation of a nonnegative random variable, we have

E
[

max
i=1,...,n

exp (tXi)

]
=

∫ ∞

0

Pr

[
max

i=1,...,n
exp (tXi) ≥ s

]
ds

≤
n∑
i=1

∫ ∞

0

Pr [exp (tXi) ≥ s] ds

=

n∑
i=1

E [exp (tXi)] .

3 A Brief Venture Into the World of Random Matrices
In this section, we illustrate the utility our concentration inequalities by bounding various impor-
tant quantities associated to well-known random matrix ensembles. One of the landmark appli-
cations of random matrix theory was Eugene Wigner’s observation that the eigenvalue spacings
of a random matrix can be used to fruitfully model the energy levels of heavy atomic nuclei;
mathematical physicists often refer to this insight as Wigner’s surmise.

“Perhaps I am now too courageous when I try to guess the distribution of the distances
between successive levels (of energies of heavy nuclei). Theoretically, the situation is
quite simple if one attacks the problem in a simpleminded fashion. The question is
simply what are the distances of the characteristic values of a symmetric matrix with
random coefficients.” — Eugene Wigner 1956

Random matrix theory now plays a central role in modern high-dimensional probability and
statistics, with abundant applications throughout science and engineering.

3.1 The Sherrington–Kirkpatrick Spin Glass
We begin by looking at optimizing the quadratic form of a random matrix drawn over the Boolean
hypercube {±1}n. When the matrix is drawn from the Gaussian orthogonal ensemble (GOE),
the optimizers are known as the ground states of the Sherrington–Kirkpatrick model in statistical
physics. This model has received a lot of attention in recent years. Its nonrigorous analysis was one
of many reasons Giorgio Parisi won the Nobel Prize in Physics in 2021, and its rigorous analysis
was one of many reasons Michel Talagrand won the Abel Prize in 2024.

Definition 3 (Gaussian Orthogonal Ensemble (GOE)). For n ∈ N, a random symmetric matrix
J ∈ Rn×n is drawn from the Gaussian Orthogonal Ensemble GOE(n) if it is given by J = G+G⊤

√
2n

,
where G ∈ Rn×n has i.i.d. N (0, 1) entries.

1For a nonnegative random variable Y , we have E[Y ] =
∫∞
0 Pr[Y ≥ y] dy.
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Another way to describe J is to say that its strictly upper triangular entries are drawn i.i.d.
from N (0, 1/n), its diagonal entries are drawn i.i.d. from N (0, 2/n), and its strictly lower triangular
entries are set to ensure symmetry.

Theorem 3.1. For n ∈ N, J ∼ GOE(n), and H(φ)
def
= 1

2φ
⊤Jφ we have

E
[

max
φ∈{±1}n

H(φ)

]
≤ n ·

√
ln 2.

Moreover,

Pr

[
max

φ∈{±1}n
H(φ) ≥ γn

]
≤ 2n · exp

(
−γ2n

)
, ∀γ > 0.

Remark 3. If we let Y = maxφ∈{±1}n H(φ), then we can actually obtain the significantly more
useful bound of

Pr [|Y − E[Y ]| ≥ γn] ≤ 2 exp

(
−γ2n

2

)
by using concentration for Lipschitz functions of Gaussian random vectors.

Proof. For each φ ∈ {±1}n, observe that the random variable H(φ) is distributed as a mean-zero
Gaussian with variance

Var (H(φ)) =
1

2n
Var

(
φ⊤Gφ

)
=

1

2n

n∑
i,j=1

φ2
iφ

2
j =

n

2
,

where in the first step, we used that J = G+G⊤
√
2n

, and in the second step we used that G has i.i.d.

N (0, 1) entries. It follows that ∥H(φ)∥2VP = n
2 , and so we may apply Theorem 2.3 to the collection

of random variables {H(φ)}φ∈{±1}n to deduce the desired inequalities.

3.2 Bounding the Operator Norm
Now let us turn to bounding the operator norm of GOE(n). Since the vectors of {±1}n have
squared Euclidean norm n, Theorem 3.1 already suggests an O(1) upper bound on λmax (J) by
expressing this quantity using Rayleigh quotients: λmax (J) = supφ̸=0

φ⊤Jφ
φ⊤φ

. Hence, we might
expect the operator norm of GOE(n) to be O(1) as well. As we will show, this turns out to be
correct. In fact, it is known that ∥J∥op concentrates around 2 for J ∼ GOE(n).

Using a somewhat bare-handed (but still generically useful) approach, we will instead show an
O(1) upper bound on ∥J∥op in the more general setting of matrices with independent sub-Gaussian
entries. The key challenge we will need to overcome, unlike the case of the discrete hypercube
{±1}n, is bounding ∥Jφ∥2 over all vectors in the unit sphere Sn−1, which is an uncountably
infinite set.

Theorem 3.2. There exist universal numerical constants C,γ∗ > 0 such that the following holds
for all γ > γ∗ and n ∈ N: For any random matrix J whose entries are independent, zero-mean,
and sub-Gaussian with variance proxy σ̂2/n,

Pr
[
∥J∥op ≥ γ · σ̂

]
≤ 2 exp

(
−Cγ2n

)
.

The overarching strategy will be the same as in the proof of Theorem 3.1. However, since we
cannot Union Bound over all uncountably many unit vectors, we will instead Union Bound over a
suitable finite subset N ⊆ Sn−1. On the one hand, we will want our set N to be sufficiently dense
so that it is a “good approximation” to the entire unit sphere Sn−1. On the other hand, we will
want the cardinality of N to be at most exponential in O(n) so that the concentration bound we
have for each individual ∥Jφ∥2 isn’t overwhelmed when we invoke the Union Bound.

Note that the reason this strategy has any hope of working in the first place is that we expect
the function φ 7→ ∥Jφ∥2 to be Lipschitz. If this were the case, then for any point ψ ∈ Sn−1, if we
find another point φ ∈ N such that ∥φ− ψ∥2 is small, then we can bound ∥Jψ∥2 using a bound
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on ∥Jφ∥2 plus a bound on ∥J∥Lip · ∥φ− ψ∥2. One potential issue is that ∥J∥Lip ≍ ∥J∥op, and so if
we could already bound ∥J∥Lip, then we’d already be done and there would be no need to execute
our strategy. One must be slightly careful to circumvent this circular reasoning, but fortunately
for us, this will not be difficult.

Let us now begin formalizing our strategy.

Definition 4 (δ-Covering/δ-Net). Fix a metric space (X , d). For δ > 0, a δ-covering (or δ-net)
of X is a subset C ⊆ X such that for every x ∈ X , there exists y ∈ C such that d(x, y) ≤ δ. In
other words, X ⊆

⋃
y∈C Bd(y, δ), where Bd(y, δ) = {x ∈ X : d(x, y) ≤ δ} denotes the closed ball of

radius δ around y with respect to the metric d.

There is a dual concept called δ-packing, which we will leverage in a moment. We will need
two lemmas about δ-coverings of the unit sphere, whose proofs are straightforward and provided
at the end of the section.

Lemma 3.3. For 0 < δ < 1, let N ⊆ Sn−1 be a δ-covering of Sn−1 with respect to Euclidean
distance. Then for any matrix J , we have

max
φ∈N

∥Jφ∥2 ≤ ∥J∥op ≤
1

1− δ
·max
φ∈N

∥Jφ∥2 .

Lemma 3.4 (Covering Number of the Sphere). For any n ∈ N and δ > 0, there exists a δ-covering
of the unit sphere Sn−1 in Rn with at most

(
1 + 2

δ

)n points.

Proof of Theorem 3.2. Let 0 < δ < 1 be a parameter to be determined later. By Lemma 3.4, there
exists a δ-covering N of Sn−1 with at most

(
1 + 2

δ

)n points. Observe that

Pr
[
∥J∥op ≥ γ · σ̂

]
≤ Pr

 ⋃
φ∈N

{
∥Jφ∥2 ≥ (1− δ) · γ · σ̂

} (Lemma 3.3)

≤
∑
φ∈N

Pr
[
∥Jφ∥2 ≥ (1− δ) · γ · σ̂

]
. (Union Bound)

Now, let us bound each term in the sum. Observe that for any fixed vector φ ∈ Sn−1, each entry
of X = Jφ is sub-Gaussian with variance proxy σ̂2/n by Theorem 2.1. Since the rows of J are
independent and have zero mean, the entries of X are independent and have zero mean. Applying
Lemma 2.2, it follows that

Pr [∥Jφ∥2 ≥ (1− δ) · γ · σ̂] ≤ exp
(
−C(1− δ)2γ2n

)
, ∀γ > γ∗.

Plugging in t = γ · σ̂ and combining with the above Union Bound, we obtain

Pr
[
∥J∥op ≥ γ · σ̂

]
≤ 2

(
1 +

2

δ

)n
· exp

(
−C(1− δ)2γ2n

)
.

By setting δ to be some constant, e.g. 1/2, and then setting γ∗ sufficiently large, we obtain the
desired result.

3.3 On δ-Coverings of the Unit Sphere
Proof of Lemma 3.3. The first inequality is immediate by the definition of the operator norm and
the fact that N ⊆ Sn−1. For the second inequality, let ψ ∈ Sn−1 be such that ∥Jψ∥2 = ∥J∥op,
which exists by continuity and compactness. Since N is a δ-covering, there exists φ ∈ N such that
∥φ− ψ∥2 ≤ δ. Hence, we have

∥J∥op = ∥Jψ∥2 (Definition of ψ)

≤ ∥J(φ− ψ)∥2 + ∥Jφ∥2 (Triangle Inequality)
≤ δ · ∥J∥op + ∥Jφ∥2 . (Definition of φ)

Rearranging yields the claim.
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Proof of Lemma 3.4. Let us choose as an inclusion-wise maximal δ-packing : We seek a subset
N ⊆ Sn−1 such that for all pairs of distinct points φ,ψ ∈ N , we have ∥φ− ψ∥2 > δ, and moreover,
no strict superset has the same property. Such a set can be constructed greedily, for instance. We
will argue two points:

1. First, any maximal δ-packing is also a δ-covering.

2. Second, any δ-packing has cardinality upper bounded by
(
1 + 2

δ

)n. In particular, the greedy
procedure for constructing N must terminate after

(
1 + 2

δ

)n steps.

For the first point, observe that if N weren’t a δ-covering, then there would exist some point
ψ ∈ Sn−1 such that ∥φ− ψ∥2 > δ for all φ ∈ N . But then we could have added ψ to the set N
and preserved the fact that it is a δ-covering, thus contradicting maximality of N .

For the second point, we use a standard volume argument. Each point φ added to N carves
out a closed radius- δ2 Euclidean ball B2

(
φ, δ2

)
of points such that B2

(
φ, δ2

)
∩ B2

(
ψ, δ2

)
= ∅ for

all distinct pairs φ,ψ ∈ N ; this pairwise disjointness is by the Triangle Inequality and the δ-
separation between the points of N . Since B2

(
φ, δ2

)
⊆ B2

(
0, 1 + δ

2

)
for all φ ∈ Sn−1 by the

Triangle Inequality, it follows that

|N | ·Vol
(
B2

(
0,
δ

2

))
= Vol

 ⋃
φ∈N

B2

(
φ,
δ

2

) (Pairwise disjointness)

≤ Vol

(
B2

(
0, 1 +

δ

2

))
. (Using B2

(
φ, δ2

)
⊆ B2

(
0, 1 + δ

2

)
)

Rearranging then yields

|N | ≤
Vol

(
B2

(
0, 1 + δ

2

))
Vol

(
B2

(
0, δ2

)) =

(
1 + δ

2

)n
(δ/2)n

=

(
1 +

2

δ

)n
.
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A Unfinished Proofs
Proof Sketch of Lemma 1.2. For convenience, we only prove the inequality Var(X) ≲ ∥X∥2ψ2

.
Without loss of generality, we may assume E[X] = 0. In this case, if we write K = ∥X∥ψ2

,
then

E
[
X2
]
=

∫ ∞

0

Pr[X2 ≥ s] ds (Layered cake representation of an expectation)

=

∫ ∞

0

Pr
[
exp

(
X2/K2

)
≥ exp

(
s/K2

)]
ds

≤ E
[
exp

(
X2/K2

)]
·
∫ ∞

0

exp
(
− s

K2

)
ds (Markov’s Inequality)

≤ 2K2. (Calculation and definition of K)
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