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1 Weaknesses of Second Moment Tail Bounds
In the previous lectures, we’ve already seen how methods based purely on estimating expectations
and variances can already yield extremely nontrivial results. In this lecture, we begin studying
concentration inequalities which are stronger than what the second moment method and Cheby-
shev’s Inequality can give. These stronger concentration inequalities typically go under the name
of Chernoff bounds.

To get a sense of when Chebyshev will fail, consider the classic combinatorial optimization
problem MAXCUT: Given a graph G = (V,E), the goal is to find a partition

(
S, S

)
of V into two

nonempty pieces, i.e. a cut, maximizing the number of cut edges∣∣E (S, S)∣∣ = #{uv ∈ E : u ∈ S, v /∈ S}.

We would like to get a handle on the random variable MAXCUT(G) for a randomly chosen graph
G ∼ G(n, 1/2). Certainly, for each fixed cut

(
S, S

)
, it is easy to compute the expectation and

variance of the number of cut edges
∣∣E (S, S)∣∣, since we can use the independence afforded by the

model G(n, 1/2). Hence, we can apply Chebyshev to deduce a 1% bound on the probability that∣∣E (S, S)∣∣ deviates from its expectation by more than a constant factor.
Now, there are complex dependencies between the number of cut edges

∣∣E (S, S)∣∣ as we vary
over the cuts

(
S, S

)
, and so the best tool at our disposal for controlling the maximum cut is the

Union Bound. However, there are exponentially many possible cuts
(
S, S

)
, and so we would need

an inverse exponential bound on the deviation probabilities for this strategy to have any chance of
working. Unfortunately, Chebyshev simply isn’t strong enough to furnish such bounds.

Note that Chebyshev’s Inequality is tight in general. The reason it fails in the above application
is primarily because it doesn’t actually take full advantage of joint independence of G(n, 1/2).
Indeed, the variance of

∣∣E (S, S)∣∣ is the same even if we allow the edges of G to be pairwise
independent, which is significantly weaker. In general, the more independence you have among a
collection of random variables, then the better concentrated their sum will be.

2 Concentration Inequalities Beyond Chebyshev
Throughout this section, we let {Xi}∞i=1 be a sequence of independent and identically distributed
(i.i.d.) random variables with mean µ and variance σ2 < ∞. We also write Xn

def
= 1

n

∑n
i=1Xi,

which has mean µ and variance σ2

n .

• Law of Large Numbers (LLN): This is the qualitative statement that averages of i.i.d.
random variables concentrate around their mean. Formally, the weak version says that for
every ϵ > 0,

lim
n→∞

Pr
[∣∣Xn − µ

∣∣ < ϵ
]
= 1.
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We proved this in the previous lecture using Chebyshev’s Inequality. Notably, it does not
require the full power of joint independence; pairwise independence is sufficient. There is
also a strong version of the law of large numbers which we won’t discuss here.

• Central Limit Theorem (CLT): In many scenarios, we need more precise quantitative
information on the deviation probability. This is furnished by the famous Central Limit
Theorem, which stipulates pointwise convergence of the cumulative distribution function

Pr

[√
n

σ

(
Xn − µ

)
≤ t

]
→ Pr

g∼N (0,1)
[g ≤ t] =

1√
2π

∫ t

−∞
exp

(
−g

2

2

)
dg, ∀t ∈ R,

where N (0, 1) denotes the standard Gaussian distribution. Note that the rescaling by
√
n
σ

ensures that the resulting random variable has unit variance.

Standard bounds on the cumulative distribution function of N (0, 1) say that

t

t2 + 1
· 1√

2π
exp

(
− t

2

2

)
≤ Pr

g∼N (0,1)
[g > t] ≤ 1

t
· 1√

2π
exp

(
− t

2

2

)
, ∀t > 0.

Hence, if we set t to be of order
√
n
σ · µ, then we expect to have the following large deviation

inequality

Pr
[∣∣Xn − µ

∣∣ ≥ ϵµ
]
“ ≲ ” exp

(
−nµ

2

σ2

)
from the Central Limit Theorem. This exponential decay in n is extremely useful in practice since it
is effective even when applying the Union Bound to a large number of random variables. However,
at the moment, the above inequality is not legitimate due the error term in the convergence. In
this lecture, we will establish such an inequality in the case of bounded random variables. These
types of inequalities are often called Chernoff bounds in the literature.

Theorem 2.1 (Chernoff–Hoeffding Inequality). Let X1, . . . , Xn be independent random variables,
where for each i = 1, . . . , n, Xi is bounded in the interval [ai, bi] with probability 1. Then

Pr
[
Xn − E

[
Xn

]
≥ t
]
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
, ∀t ∈ R.

Remark 1. Note that the quantity 1
n2

∑n
i=1

(
bi−ai

2

)2
is only a proxy for the variance of Xn. In

general, it is an upper bound, with equality if and only if Xi takes the extremal values ai, bi each
with probability 1/2. In an ideal world, we’d instead get a tail bound like

Pr
[
Xn − E

[
Xn

]
≥ t
]
“ ≤ ” exp

(
− t2

2Var
(
Xn

)) , ∀t ≥ 0,

which would match the Gaussian case. We will see more refined inequalities of this flavor in the
next few lectures, although many random variables do not satisfy such an inequality. We note
that for {0, 1}-valued random variables, there are user-friendly inequalities which are sharper than
Theorem 2.1.

Note that we can apply the above theorem to −Xn as well to obtain the same upper bound on
the lower tail Pr

[
Xn − E

[
Xn

]
≤ −t

]
. In particular, combining these two inequalities yields (and,

for convenience, specializing to the i.i.d. case),

Pr
[∣∣Xn − E

[
Xn

]∣∣ ≥ t
]
≤ 2 · exp

(
− 2nt2

(b− a)2

)
. (1)

Before we prove Theorem 2.1, let us first apply it to the optimization problem from the beginning
of the lecture.

Theorem 2.2. We have

Pr
G∼G(n,1/2)

[
MAXCUT(G) ≥

(
1 +

1

2
√
n

)
· n

2

8

]
≤ 2−n.
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Proof. Fix ∅ ⊊ S ⊊ V , and for each pair u ∈ S, v ∈ S, let Xuv denote the indicator random variable
for whether or not {u, v} is an edge in the random graph; note that these are all independent. Then
expected size of the corresponding cut

(
S, S

)
is

EG∼G(n,1/2)

[∣∣EG

(
S, S

)∣∣] = ∑
u∈S,v∈S

E[Xuv] =
|S| · |V \ S|

2
≤ max

1≤k≤n−1

k · (n− k)

2
≤ n2

8
.

Applying Theorem 2.1 and again using the fact that |S| · |V \ S| ≤ n2/4

Pr
G∼G(n,1/2)

[∣∣EG

(
S, S

)∣∣ ≥ n2

8
+ t

]
≤ exp

(
− 2t2

|S| · |V \ S|

)
≤ exp

(
−8(t/n)2

)
.

Setting t = 1
2n

3/2 and then applying a Union Bound over all ∅ ⊊ S ⊊ V , we obtain

Pr
G∼G(n,1/2)

[
MAXCUT(G) ≥

(
1 +

1

2
√
n

)
· n

2

8

]
≤ 2n exp (−2n) ≤ 2−n.

Remark 2. A matching lower bound for MAXCUT(G) is also known, namely

Pr
G∼G(n,1/2)

[
MAXCUT(G) ≥

(
1 + Ω

(
1√
n

))
· n

2

8

]
≥ 1− o(1).

2.1 The Moment Generating Function: Proof of Theorem 2.1
Observe that by generalizing the proof of Chebyshev’s Inequality, we can bound the probability
that a random variable X deviates from its expectation by leveraging higher moments of X: If X
has E[X] = 0, then by Markov’s Inequality,

Pr [X ≥ t] ≤ Pr
[
|X|k ≥ tk

]
≤

E
[
|X|k

]
tk

, ∀t > 0.

Notice the 1/tk decay rate in t, which is much better than Chebyshev when k > 2. Of course, one
needs a good bound on the moment E

[
|X|k

]
, but this can often be obtained e.g. if X is a sum of

sufficiently independent random variables.
If we have control over all of the moments of X, then we can encapsulate all of this information

into a single generating function.

Definition 1 (Moment Generating Function). The moment generating function of a random
variable X is defined as

s 7→ E [exp (s ·X)] =

∞∑
k=0

sk · E
[
Xk
]

k!
.

Remark 3. There are random variables for which its moment generating function can only be de-
fined in a bounded interval of s. Of course, for bounded random variables, the moment generating
function is well-defined everywhere. We actually already saw this generating function (slightly
reparametrized) when we discussed the extinction probability for Galton–Watson branching pro-
cesses.

To prove Theorem 2.1, we will need to bound the moment generating function of a bounded
random variable. This is furnished by the following lemma.

Lemma 2.3 (Hoeffding’s Lemma). Let X be a random variable taking values in the bounded
interval [a, b]. Then we have the following upper bound on the moment generating function of X:

E [exp (s · (X − E[X]))] ≤ exp

(
s2

2
·
(
b− a

2

)2
)
.
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Proof. This lemma can be proved through direct calculations; we instead give a more conceptual
proof. By shifting X and the interval [a, b], we may assume that E[X] = 0. Hence, our claim is
equivalent to showing that

ψX(s)
def
= logE[exp(s ·X)] ≤ s2

2
·
(
b− a

2

)2

.

The function ψX(s) is known as the cumulant generating function of X. It is also fundamental,
and we will see generalizations of it in a future lecture.

Claim 2.4. For each s ∈ R, define a new random variable Ys whose law is given as follows:

Pr[Ys = z] =
Pr[X = z] · exp(s · z)

E [exp(s ·X)]
, ∀z ∈ R.

The law of Ys is known as an exponential tilt of the law of X. Then

ψ′
X(s) = E[Ys]

ψ′′
X(s) = Var(Ys).

In particular, ψX is convex on R.

Proof. By the Chain Rule and linearity of expectation, we have

ψ′
X(s) =

d
dsE [exp(s ·X)]

E [exp(s ·X)]
=

E
[

d
ds exp(s ·X)

]
E [exp(s ·X)]

=
E [X · exp(s ·X)]

E [exp(s ·X)]
= E[Ys].

Differentiating again, we obtain

ψ′′
X(s) =

E
[
X2 · exp(s ·X)

]
E [exp(s ·X)]

− E [X · exp(s ·X)]
2

E [exp(s ·X)]
2 = E[Y 2

s ]− E[Ys]2 = Var(Ys).

Since the variance of a random variable is always nonnegative, we deduce that ψX is convex.

We will also need the following standard lemma from convex analysis, whose proof is given in
Appendix A.

Claim 2.5. Let f, g : R → R be smooth functions. If f − g is convex, and there exists a point
x∗ ∈ R such that f(x∗) ≥ g(x∗) and f ′(x∗) = g′(x∗), then f(x) ≥ g(x) for all x ∈ R.

To conclude the proof, we verify the conditions of Claim 2.5 for ψX and f(s) = s2

2 ·
(
b−a
2

)2
.

Clearly, f(0) = f ′(0) = ψX(0) = 0. Furthermore, ψ′
X(0) = E[Y0] = E[X] = 0 by assumption.

Finally, observe that their difference has second derivative

f ′′(s)− ψ′′
X(s) =

(
b− a

2

)2

−Var(Ys),

where we again used Claim 2.4 for the last step. But Ys has the same support as X, and in
particular, is bounded in the interval [a, b]. Hence, Var(Ys) ≤

(
b−a
2

)2
for all s ∈ R. This certifies

the required convexity of f − ψX . Applying Claim 2.5 concludes the proof.

Proof of Theorem 2.1. The high-level recipe for how nearly all Chernoff-type bounds are proved is
as follows:

• Apply Markov’s Inequality to the random variable exp(s ·X) for some parameter s > 0.

• Invoke a bound on the moment generating function of X.

• Optimize over the choice of s.
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In the setting of Theorem 2.1, fix an arbitrary s > 0. We have

Pr
[
Xn − E

[
Xn

]
≥ t
]
= Pr

[
exp

(
s ·
(
Xn − E

[
Xn

]))
≥ exp(s · t)

]
≤

E
[
exp

(
s ·
(
Xn − E

[
Xn

]))]
exp(s · t)

(Markov’s Inequality)

≤ exp(−s · t) ·
n∏

i=1

exp
( s
n
· (Xi − E[Xi])

)
(Independence)

≤ exp

(
s2

2n2
·

n∑
i=1

(
bi − ai

2

)2

− s · t

)
. (Lemma 2.3)

Since this holds for all s, to obtain the sharpest result, we choose s to minimize the right-hand
side. This yields

Pr[X ≥ t] ≤ exp

(
inf
s>0

{
s2

2n2
·

n∑
i=1

(
bi − ai

2

)2

− s · t

})

= exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
,

where the infimum is attained at s = 4tn2∑n
i=1(bi−ai)2

.

3 Quantitative CLT and Anticoncentration
Theorem 3.1 (Berry–Esseen Theorem). Let {Xi}∞i=1 be a sequence of independent and identically
distributed (i.i.d.) random variables with mean µ and variance σ2 < ∞. Suppose in addition our
random variables also have finite skewness γ def

= EX

[
|X−µ|3

σ3

]
< ∞. Then there exists a universal

constant C > 0 such that we have the uniform convergence estimate

sup
t∈R

∣∣∣∣Pr [√nσ (
Xn − µ

)
≤ t

]
− Pr

g∼N (0,1)
[g ≤ t]

∣∣∣∣ ≤ Cγ√
n
.

Proving this theorem is out of the scope of this lecture. However, let us use it to understand
the typical order of fluctuations of the random variable Xn. As we previously discussed, neither
the Central Limit Theorem nor the Berry–Esseen Theorem can be used to directly obtain the
exponential decay in n we saw in Eq. (1), since there is an additive error term decaying at the
much slower rate of O(1/

√
n). However, the advantage of the precision of Theorem 3.1 is that it

also gives lower bounds on the mass of the tails. To see this, observe that for any t ≥ 0,

Pr

[∣∣Xn − µ
∣∣ ≥ t · σ√

n

]
≥ 2 · Pr

g∼N (0,1)
[g ≥ t]−O(1/

√
n).

In particular, setting t to be an absolute constant, we obtain

Pr

[∣∣Xn − µ
∣∣ ≥ Ω

(√
Var

(
Xn

))]
≥ Ω(1) > 0.

In other words, the deviation
∣∣Xn − µ

∣∣ really does fluctuate at the order of the standard deviation
of Xn. This is certainly not true for general random variables with finite variance. In the literature,
this type of inequality is often referred to as an anticoncentration inequality.

A Unfinished Proofs
Proof of Claim 2.5. By replacing f with f−g and replacing g with the function which is identically
0, it suffices to show that f(x) ≥ 0 globally if f is convex and satisfies f(x∗) ≥ 0, f ′(x∗) = 0 for
some point x∗ ∈ R. One way to see this is that global convexity of f combined with f ′(x∗) = 0
imply that x∗ is a minimizer of f . Hence, f(x) ≥ f(x∗) ≥ 0 for all x ∈ R. Another way to see this
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is to use the fact that f is lower bounded by its tangent line at any point. In particular, using the
tangent at x∗, we obtain

f(x) ≥ f(x∗) + f ′(x∗) · (x− x∗) = f(x∗) ≥ 0

for all x ∈ R.
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