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1 Error-Correction and Shannon’s Theorem
In this lecture, we use the probabilistic method combined with the Weak Law of Large Numbers
to prove a remarkable characterization of the fundamental limits of error-correcting mechanisms
for communication in the presence of noise. We will work with the following bare-bones definition
of an error-correcting code.

Definition 1 (Error-Correcting Code). For positive integers k, n ∈ N satisfying n ≥ k, an (error-
correcting) [n, k]-code is a pair of functions Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k.
We will often refer to the former as the encoder, and the latter as the decoder. The rate of the
code is the ratio r = k

n . We often refer to the elements of {0, 1}k as messages, and the elements
of {0, 1}n as codewords.

One should imagine that a sender would like to transmit a message m ∈ {0, 1}k to a receiver,
but only has access to a noisy communication channel. Hence, the sender will first encode the
message, and then send Enc(m) through the channel. The hope is that even though the codeword
Enc(m) can suffer errors during transmission, the receiver will be able to recover m by applying the
decoder Dec to the (possibly corrupted) codeword they received. In practice, we typically want our
error-correcting codes to have additional properties, e.g. linearity, locality, efficient computability
of Enc,Dec, etc. We will not be concerned with these in this lecture.

To make the problem well-defined, we also need to fix a model for how errors will be introduced.
In this lecture, we will only consider a very special type of error, namely every bit of the codeword
can be flipped independently with some probability 0 ≤ p ≤ 1/2. This channel should be familiar;
we saw it in the context of the broadcast process on trees.

Definition 2 (Binary Symmetric Channel). For 0 ≤ p ≤ 1/2, the binary symmetric channel with
parameter p, denoted BSCp, is described by the following randomized operation: For any bit-string
x ∈ {0, 1}∗ of any length n, y = BSCp(x) is a random length-n bit-string such that independently
for each i = 1, . . . , n, yi = xi with probability 1− p and yi ̸= xi with probability p.

One can, of course, consider more exotic error models (e.g. random erasures, random swaps,
correlated bit flips, etc.), as well as worst-case error models.

For an error-correcting code (Enc,Dec), we will refer to

Pr [Dec (BSCp (Enc(m))) ̸= m] and Pr [Dec (BSCp (Enc(m))) = m]

as the failure/error and success probabilities of the message m, respectively. The former (resp.
latter) is the probability that if we send the encoded message Enc(m) through the noisy BSCp

channel, then the receiver will be unable (resp. able) to recover m using the decoding function
Dec(·).

Naturally, there is a tradeoff between the rate of an error-correcting code, which quantifies its
efficiency, and the (worst-case) failure probability of any given message. For instance, if you allow
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arbitrarily small rates (i.e. arbitrarily inefficient codes), then you can drive down the failure prob-
abilities uniformly by using something like the repetition code, which simply copies each message
bit some large number of times.

Remarkably, there turns out to be a specific threshold for the rate, above which every error-
correcting code must fail for some message with probability close to 1, and below which there
exists an error-correcting code with failure probabilities uniformly close to 0. This phase transition
phenomenon is the content of Shannon’s seminal Noisy Coding Theorem. To state it, define the
binary entropy function by

H(p)
def
= −p log2 p− (1− p) log2(1− p), ∀p ∈ [0, 1].

Theorem 1.1 (Shannon’s Noisy Coding Theorem; [???]). Fix any constant 0 ≤ p < 1/2.

• Suppose r > 1−H(p). Then for every n ∈ N and every [n, k]-code (Enc,Dec) with k = rn,

max
m∈{0,1}k

Pr [Dec (BSCp (Enc(m))) ̸= m] ≥ 1− o(1).

• Suppose r < 1 − H(p). Then for every n ∈ N, there exists an [n, k]-code (Enc,Dec) with
k = rn such that

max
m∈{0,1}k

Pr [Dec (BSCp (Enc(m))) ̸= m] ≤ o(1).

Remark 1. We note that Shannon’s Noisy Coding Theorem actually holds for much more general
channels beyond the BSCp, although one must replace 1 − H(p) by a more general information-
theoretic quantity known as the channel capacity.

To prove Theorem 1.1, we will need an extremely weak concentration bound for sums of inde-
pendent random variables, which can be obtained directly from the second moment. By leveraging
more powerful concentration estimates like Chernoff bounds (which we introduce in the next lec-
ture), one can obtain strong quantitative control on the o(1) terms in Theorem 1.1.

Theorem 1.2 (Weak Law of Large Numbers). Let {Xi}∞i=1 be a sequence of independent and
identically distributed (i.i.d.) random variables with mean µ and variance σ2 < ∞. Then

lim
n→∞

Pr

[∣∣∣∣∣ 1n
n∑

i=1

Xi − µ

∣∣∣∣∣ < ϵ

]
= 1, ∀ϵ > 0.

In other words, we have convergence in probability 1
n

∑n
i=1 Xi

P→ µ as n → ∞.

As the proof shows, one can allow ϵ = ϵ(n) > 0 to decay to 0 as n → ∞ (although it needs
ϵ(n) ≫ 1/

√
n). We will take advantage of this flexibility below. One can also significantly relax

the joint independence assumption to merely pairwise independence, i.e. for all i ̸= j and all xi, xj ,
Pr[Xi = xi, Xj = xj ] = Pr[Xi = xi] ·Pr[Xj = xj ]. A direct calculation reveals this latter condition
is sufficient to guarantee that the variance of the sum is equal to the sum of the variances.

Proof. By independence, we have Var
(
1
n

∑n
i=1 Xi

)
= σ2

n . Hence, by Chebyshev’s Inequality,

Pr

[∣∣∣∣∣ 1n
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ ϵ

]
≤

Var
(
1
n

∑n
i=1 Xi

)
ϵ2

=
σ2

ϵ2
· 1
n
.

Finally, to quantify the amount of errors introduced to a codeword, we define a metric on
bit-strings known as Hamming distance:

dH(x,y)
def
= ∥x− y∥1 = #{i ∈ [n] : xi ̸= yi}, ∀x,y ∈ {0, 1}n.

We have the following bound on the volume of Hamming balls, similar to what we used when we
looked at the connectivity threshold of Erdös–Rényi random graphs.

2



Lemma 1.3 (Volume of a Hamming Ball). For 0 ≤ p ≤ 1/2,

#{x ∈ {0, 1}n : dH (0,x) ≤ pn} =

pn∑
k=0

(
n

k

)
≤ 2H(p)·n.

Proof. The first identity is immediate. For the second identity, we have

1 = (p+ (1− p))n ≥
pn∑
k=0

(
n

k

)
pk(1− p)n−k ≥ ppn(1− p)(1−p)n

pn∑
k=0

(
n

k

)
= 2−H(p)·n

pn∑
k=0

(
n

k

)
,

where in the second inequality, we used 0 ≤ p ≤ 1/2 and the fact that the function k 7→ pk(1−p)n−k

is monotone decreasing for 0 ≤ k ≤ pn. Rearranging then yields the upper bound.

2 Proof of Theorem 1.1: The Case r > 1−H(p)

We will go via the contrapositive, and show that if there exists an error-correcting code for which
the success probability is uniformly lower bounded by some positive constant ϵ > 0 for all possible
messages m ∈ {0, 1}k, then it must be that r ≤ 1−H(p) + o(1). To achieve this, our goal will be
to argue that any message m with constant success probability must have at least 2(H(p)−o(1))·n

codewords x ∈ {0, 1}n which decode to m, i.e. Dec(x) = m. Since the preimages of the decoder
Dec partition {0, 1}n, this will imply a bound on the number of possible such messages m. This is
a classic example of a volume argument.

Let us now formalize our strategy.

Proposition 2.1. For any constant ϵ > 0 independent of n, if m ∈ {0, 1}k is a message with
success probability at least ϵ, then

# {x ∈ {0, 1}n : Dec(x) = m} ≥ 2(H(p)−o(1))·n.

Let us first quickly see how this can be used to show r ≤ 1−H(p)+o(1) and complete the proof
of the first case of Theorem 1.1. For r ∈ [0, 1], suppose there exists ϵ > 0 such that for infinitely
many n ∈ N, there exist Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k with k = rn such that

max
m∈{0,1}k

Pr [Dec (BSCp (Enc(m))) ̸= m] ≤ 1− ϵ

Then the success probability of every m ∈ {0, 1}k is uniformly lower bounded by ϵ. Hence,

2n ≥
∑

m∈{0,1}k

# {x ∈ {0, 1}n : Dec(x) = m} (Preimages of Dec partition {0, 1}n)

≥ 2k · 2(H(p)−o(1))·n. (Invoking Proposition 2.1)

Rearranging then yields the inequality r ≤ 1−H(p) + o(1). Since this holds for infinitely many n,
we must have r ≤ 1−H(p) as desired.

Proof of Proposition 2.1. Our assumption says that applying BSCp to Enc(m) yields a random bit-
string which happens to fall in the preimage {x ∈ {0, 1}n : Dec(x) = m} with constant probability:

Pr
[
BSCp (Enc(m)) ∈ Dec−1(m)

]
≥ ϵ.

Our goal is to use this lower bound to deduce a lower bound on the cardinality of the preimage
Dec−1(m). Observe that if A ⊆ {0, 1}n is any subset of codewords, then∣∣Dec−1(m)

∣∣ ≥ ∣∣Dec−1(m) ∩A
∣∣ = Pr

x∼Unif(A)

[
x ∈ Dec−1(m)

]
· |A| .

We will employ an inequality of this flavor. Somewhat inconveniently, the probability in our
assumption is with respect to a nonuniform distribution over {0, 1}n. However, we can get around
this by using concentration. For convenience, let y = Enc(m). For δ > 0, let Aδ denote the
annulus around y

Aδ
def
= {x ∈ {0, 1}n : dH (x,y) ∈ [p− δ, p+ δ]} .
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The idea is to choose δ(n) → 0 so that we get some “approximate uniformity”; in particular, all
codewords in Dec−1(m)∩Aδ(n) will have approximately the same probability mass under BSCp(y).
By Theorem 1.2 (or its proof), we can make the decay δ(n) → 0 sufficiently slow while maintaining

Pr
[
BSCp(y) ∈ Aδ(n)

]
≥ 1− ϵ

2
. (1)

This will ensure that we do not incur too much loss when we pass from BSCp(y) to the conditional
distribution BSCp(y) | Aδ(n). Let us now make this formal.

Applying the Law of Total Probability, we have

ϵ ≤ Pr
[
BSCp (y) ∈ Dec−1(m)

]
= Pr

[
BSCp (y) ∈ Dec−1(m) ∩Aδ(n)

]
+ Pr

[
BSCp (y) ∈ Dec−1(m) | BSCp (y) /∈ Aδ(n)

]︸ ︷︷ ︸
≤1

· Pr
[
BSCp (y) /∈ Aδ(n)

]︸ ︷︷ ︸
≤ϵ/2 using Eq. (1)

≤ Pr
[
BSCp (y) ∈ Dec−1(m) ∩Aδ(n)

]
+

ϵ

2
.

Hence, we obtain on the one hand

Pr
[
BSCp (y) ∈ Dec−1(m) ∩Aδ(n)

]
≥ ϵ

2
= Ω(1).

On the other hand,

Pr
[
BSCp (y) ∈ Dec−1(m) ∩Aδ(n)

]
=

∑
x∈Dec−1(m)∩Aδ(n)

Pr [BSCp(y) = x]

≤ p(p−δ(n))n(1− p)(1−p+δ(n))n ·
∣∣Dec−1(m) ∩Aδ(n)

∣∣
= 2−(H(p)−o(1))·n ·

∣∣Dec−1(m) ∩Aδ(n)

∣∣ ,
where the o(1) is due to the fact that δ(n) → 0 as n → ∞. Rearranging then yields∣∣Dec−1(m)

∣∣ ≥ ∣∣Dec−1(m) ∩Aδ(n)

∣∣ ≥ ϵ

2
· 2(H(p)−o(1))·n ≥ 2(H(p)−o(1))·n,

where we may absorb ϵ
2 into 2o(n).

3 Proof of Theorem 1.1: The Case r < 1−H(p)

Our task is to design an error-correcting code. This isn’t easy to do by hand, so let’s use the
probabilistic method. We will let Enc : {0, 1}k → {0, 1}n be a randomly chosen function, and let
Dec : {0, 1}n → {0, 1}k be the maximum likelihood decoder :

Dec (x)
def
= argmin

m∈{0,1}k

dH(x,Enc (m)).

In the case where multiple messages m attain the minimum, we select one arbitrarily. This decoder
is by no means efficient, but it is a natural one to use and can be computed by brute force. Note
that since Enc : {0, 1}k → {0, 1}n is a uniformly random function, meaning Enc(m) ∼ Unif{0, 1}n
independently over all m ∈ {0, 1}k, there is a (small) collision probability we’ll have to address in
the overall error probability of decoding.

Ultimately, our goal is to guarantee that the success probability is at least 1 − o(1) uniformly
for all m ∈ {0, 1}k. As a stepping stone, we begin by establishing an average-case guarantee.

Proposition 3.1. Suppose r < 1 − H(p) and k = rn. Then there exists η(n) decaying to 0 as
n → ∞ such that the following holds: For a uniformly random function Enc : {0, 1}k → {0, 1}n
paired with the maximum likelihood decoder Dec : {0, 1}n → {0, 1}k,

E [Pr [Dec (BSCp (Enc(m))) ̸= m]] ≤ η(n), ∀m ∈ {0, 1}k,

where the inner probability is with respect to the binary symmetric channel, and the outer expecta-
tion is with respect to the random choice of encoder.
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Proof. Because we’re using maximum likelihood decoding and because our encoder is chosen
uniformly at random, the hope is that BSCp (Enc(m)) will be close to Enc (m) and far from
Enc (m′) for m′ ̸= m. In particular, for a parameter t > 0 to be determined later, observe
that Dec (BSCp (Enc(m))) = m holds if simultaneously dH (BSCp (Enc(m)) ,Enc (m)) ≤ t, while
dH (BSCp (Enc(m)) ,Enc (m′)) > t for all m′ ̸= m. Taking the contrapositive and applying the
Union Bound, we have that

Pr [Dec (BSCp (Enc(m))) ̸= m]

≤ Pr [dH (BSCp (Enc(m)) ,Enc (m)) > t] +
∑

m′ ̸=m

Pr [dH (BSCp (Enc(m)) ,Enc (m′)) ≤ t] .

Now choose δ(n), ϵ(n) → 0 and set t = (p+ δ(n)) · n so that

Pr [dH (BSCp (Enc(m)) ,Enc (m)) > t] ≤ ϵ(n),

which is possible by Theorem 1.2 (or its proof). For the remaining terms, fix m′ ̸= m. By writing
the probability as an expectation of an indicator random variable, and then exchanging the order
of the expectations, we have

EEnc

[
Pr

BSCp

[dH (BSCp (Enc(m)) ,Enc (m′)) ≤ t]

]
= EBSCp

[
Pr
Enc

[dH (BSCp (Enc(m)) ,Enc (m′)) ≤ t]

]
.

The inner probability in the right-hand side is much easier to estimate, since BSCp (Enc(m)) can
be treated as some arbitrarily fixed codeword y ∈ {0, 1}n, and the randomness is taken over a
uniformly random x = Enc (m′). More precisely, it is equal to the probability that a uniformly
random bit-string Enc(m′) ∼ Unif{0, 1}n lands in the radius-t Hamming ball around the point
y = BSCp (Enc(m)). This probability is the same regardless of what y is, and is upper bounded
by

1

2n

(p+δ(n))·n∑
k=0

(
n

k

)
≤ 2(H(p)−1+δ(n))·n. (Using Lemma 1.3)

Combining these inequalities, we obtain

E [Pr [Dec (BSCp (Enc(m))) ̸= m]] ≤ ϵ(n) + 2(H(p)−1+δ(n))·n def
= η(n) ≤ o(1),

using that p < 1/2 so that H(p) < 1 is constant independent of n.

To complete the proof of Theorem 1.1 in the case r < 1 − H(p), observe that by averaging
Proposition 3.1 over m ∈ {0, 1}k, we have

EEnc

[
Em∼Unif{0,1}k [Pr [Dec (BSCp (Enc(m))) ̸= m]]

]
≤ η(n).

Hence, there exists an encoder Enc : {0, 1}k → {0, 1}n possessing the average-case guarantee

Em∼Unif{0,1}k [Pr [Dec (BSCp (Enc(m))) ̸= m]] ≤ η(n).

Recall that ultimately, we want this bound for hold for all m ∈ {0, 1}k, not in expectation.
Here’s the final idea. Observe that the above bound on the expectation implies that there exists

a subset of “good messages” G ⊆ {0, 1}k with |G| = 2k−1 such that for all m ∈ G, we have

Pr [Dec (BSCp (Enc(m))) ̸= m] ≤ 2 · η(n).

Indeed, if more than half of the elements of {0, 1}k have failure probability exceeding 2 · η(n), then
we would obtain a contradiction with the aforementioned bound on the expectation. Hence, we
have found an encoder with the desired properties for a set of messages G ⊆ {0, 1}k of size 2k−1. By
mapping G bijectively to {0, 1}k−1, it follows we have constructed a [n, k− 1]-code with worst-case
failure probability 2 · η(n) ≤ o(1). Replacing k with k − 1, which incurs o(1) in the rate r, then
completes the proof.
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