
6.7720/18.619/15.070 Lecture 4
Beating the Union Bound: The Lovász Local Lemma

Kuikui Liu

February 12, 2025

Acknowledgements & Disclaimers In the process of writing these notes, we consulted the
classic textbook titled “The Probabilistic Method” by Noga Alon and Joel Spencer, as well as ma-
terials by Jan Vondrak. Please be advised that these notes have not been subjected to the usual
scrutiny reserved for formal publications. If you do spot an error, please contact the instructor.

1 Boolean Satisfiability
In this lecture, we use the probabilistic method to study perhaps the quintessential algorithmic
problem in computer science: SAT. Our goal will also be to introduce a famous technique, known as
the Lovász Local Lemma (LLL), for lower bounding the probability that a collection of “bad events”
are simultaneously avoided. This technique is often employed in conjunction with the probabilistic
method. More generally, it gives a way of “beating the union bound” in settings where there is
“bounded dependence” between events (but not full independence).

To define the SAT problem, we must first define what a CNF-formula is. Let V be a collection
of Boolean-valued variables, i.e. variables taking values in {T,F}, where T denotes “True” and F
denotes “False”.

• For a variable x ∈ V, its negation is the expression ¬x, which on input T (resp. F) evaluates
to F (resp. T). A literal is an expression of the form x or ¬x for some variable x ∈ V.

• A clause C is an expression given by an OR of a collection of literals. For example, we could
have C = x1 ∨ ¬x2, which evaluates to F on inputs (x1 ← F, x2 ← T) and evalutes to T on
all other inputs.

• A CNF-formula1 Φ = (V, C) is an expression over the variables in V given by an AND of a
collection of clauses C. For example, we could have

(x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ (x3 ∨ ¬x1),

where there are three variables V = {x1, x2, x3} and three clauses x1∨¬x2, x2∨¬x3, x3∨¬x1.
This particular formula evaluates to T on the assignments (x1 ← T, x2 ← T, x3 ← T) and
(x1 ← F, x2 ← F, x3 ← F); it evaluates to F on all other assignments.

• We say an assignment of T/F to the variables satisfies a clause C if C evaluates to T under
the assignment; note that this holds if and only if at least one literal in C evaluates to T.
Similarly, we say an assignment satisfies a CNF-formula Φ = (V, C) if it satisfies every clause
C ∈ C. We say the CNF-formula Φ is satisfiable if there exists at least satisfying assignment
for Φ.

The SAT problem is the problem of finding a satisfying assignment given a CNF-formula. This is
one of the most fundamental algorithmic problems in computer science, and is among the most
basic and well-studied of all constraint satisfaction problems in discrete mathematics. It is the core
problem underpinning the theory of NP-completeness, which allows us to rigorously classify a wide
variety of computational problems as either “efficiently solvable” (i.e. “easy”) or “computationally
intractable” (i.e. “hard”).

1Here, CNF stands for conjunctive normal form.

1

It is believed that SAT is a hard problem to solve in the worst case; in fact, simply deciding
whether or not a CNF-formula is satisfiable at all is hard.2 Perhaps surprisingly, even if we restrict
the CNF-formula to be k-uniform, i.e. by requiring that all clauses have exactly k distinct variables,
the problem remains just as hard as the full SAT problem as long as k ≥ 3. Hence, it makes sense
to ask the following two questions.

• Given a CNF-formula with n variables and m clauses, let OPT denote the maximum fraction
of satisfied clauses over all possible assignments. For fixed α > 0, can we efficiently find an
assignment satisfying at least an α · OPT fraction of clauses?

• Can we enforce additional structure on our CNF-formulas so that we are guaranteed they are
satisfiable and we can efficiently find a satisfying assignment?

Regarding the first question, let us consider the version of SAT in which our CNF-formulas are
restricted to be 3-uniform. Despite the fact that this restricted problem remains as hard as general
SAT, we can always find assignments which satisfy a large fraction of clauses.

Proposition 1.1. Given any 3-uniform CNF-formula Φ = (V, C) with n variables and m clauses,
there exists an assignment satisfying at least 7

8 · m clauses irrespective of whether or not Φ is
satisfiable.

Remark 1. Furthermore, there is an efficient deterministic polynomial-time algorithm for finding
such an assignment based on the method of conditional expectations. If one slightly relaxes the
3-uniformity constraint to allow for clauses with possibly one or two literals, then there is still an
efficient algorithm due to Karloff–Zwick for finding an assignment satisfying at least 7

8 ·m clauses,
at least in the case where Φ is satisfiable [KZ97]. However, the algorithm is much more involved.

Remark 2. Amazingly, it is known that a computational phase transition occurs in the sense that
for any arbitrarily small positive constant ϵ > 0, the problem of finding an assignment satisfying at
least

(
7
8 + ϵ

)
·m clauses remains just as hard as finding perfectly satisfying solutions to general CNF-

formulas. This is one of the seminal hardness-of-approximation result due to Håstad [Hås01], who
built upon the famous PCP Theorem, a landmark result in theoretical computer science [Fei+96;
AS98; Aro+98].

Proof. We prove existence by picking a uniformly random assignment and showing that it has
a nonzero probability of satisfying at least 7

8 · m clauses. In fact, we will show that it satisfies
7
8 ·m clauses in expectation, which is a stronger claim. For each clause C ∈ C, let 1C denote the
indicator random variable for whether or not the clause C is satisfied by a given assignment. By
linearity of expectation, the expected number of satisfied clauses is∑

C∈C
E[1C] =

∑
C∈C

Pr[C is satisfied],

where the expectations and probabilities are with respect to a uniformly random assignment x ∼
Unif{T,F}V . Since each clause C is an OR of exactly 3 literals, exactly one out of the eight possible
assignments to its 3 constituent variables fails to satisfy C. In particular, Pr[C is satisfied] = 7/8
for every C ∈ C and we are done.

2 SAT and the Lovász Local Lemma (LLL)
Let us now turn to finding natural and generic conditions under which a CNF-formula is guaranteed
to be satisfiable.

Theorem 2.1. Fix k ∈ N, and let Φ = (V, C) be a k-uniform CNF-formula with n variables and
m clauses. If every variable occurs in at most 2k

4k clauses, then Φ is satisfiable.

Remark 3. Such a satisfying assignment can also be efficiently found in polynomial-time with
high probability using a stochastic local search algorithm due to Moser–Tardos [MT10]. In the
literature, this is often referred to as the algorithmic Lovász Local Lemma.

2However, most instances of SAT one encounters in practice, even those with millions of constraints, are easily
dispatched by modern SAT-solving software.

2

2.1 Beating the Union Bound with Bounded Dependence
Suppose we have a large collection of events A1, . . . , Am, and we wish to certify that with positive
probability, none of the events occur (i.e. Pr

[⋂m
i=1 Ai

]
> 0, where we write A for the complemen-

tary event). We typically view A1, . . . , Am as “bad events” we want to avoid, e.g. if we pick a ran-
dom assignment from {T,F}n, then we could take Ai to be the event that the ith clause is not sat-
isfied. If the events were all jointly independent, then of course Pr

[⋂m
i=1 Ai

]
=

∏m
i=1 (1− Pr[Ai]),

which is positive if and only if none of the events individually happen with probability 1.
However, in most applications, the events A1, . . . , Am are not jointly independent. One could

use the Union Bound to say that Pr
[⋂m

i=1 Ai

]
= 1 − Pr [

⋃m
i=1 Ai] ≥ 1 −

∑m
i=1 Pr[Ai], but this

requires
∑m

i=1 Pr[Ai] < 1 which is often far too restrictive. For instance, if we take Ai to be the
event that a uniformly random assignment satisfies the ith clause in a k-uniform CNF-formula,
then

Pr[Ai] = 2−k, ∀i = 1, . . . ,m.

This is a constant failure probability for constant k, which is much larger than the 1/m probability
needed in order for the Union Bound to be effective.

The famous Lovász Local Lemma (LLL) allows us to significantly “beat the Union Bound”
assuming the collection of events {Ai}mi=1 are “not too dependent” on each other. It is a fundamental
tool in discrete probability and theoretical computer science, and often goes hand-in-hand with
the probabilistic method.

Definition 1 (Mutual Independence). Let A1, . . . , Am be a collection of events within the same
probability space. For each i ∈ [m] and J ⊆ [m] \ {i}, we say Ai is mutually independent of
{Aj : j ∈ J} if

Pr

Ai ∩
⋂
j∈J′

Aj

 = Pr[Ai] · Pr

 ⋂
j∈J′

Aj

 , ∀J ′ ⊆ J.

Definition 2 (Dependency Graph). Let A1, . . . , Am be a collection of events within the same
probability space. We say an (undirected) graph G = (V,E) with V ∼= [m] is a dependency graph
for the events {Ai}mi=1 if for every v ∈ V , the event Av is mutually independent of the events
{Au : u /∈ N [v]}, where N [v]

def
= {v} ∪ {u ∈ V : uv ∈ E} denotes the closed neighborhood of v.

Remark 4. We emphasize that a collection of events {Ai}mi=1 need not have a unique dependency
graph. For instance, the complete graph Km is always a valid dependency graph w.r.t. any
collection of events {Ai}mi=1, although this is not very useful since its vertices have large degree.
One can also consider directed dependency graphs, but we will not do so here. For further discussion
of these points, see e.g. [SS05].

Theorem 2.2 ((Symmetric) Lovász Local Lemma (LLL)). If {Ai}mi=1 admit a dependency graph
of maximum degree ≤ d, and Pr[Ai] ≤ 1

e(d+1) for all i = 1, . . . ,m, then Pr
[⋂m

i=1 Ai

]
> 0.

Remark 5. As we will see from the proof, we can achieve a lower bound of
(
1− 1

d+1

)n

. There are
stronger versions of the LLL which make weaker assumptions and achieve more precise quantitative
lower bounds. There are beautiful and deep connections between these refined versions of the LLL,
statistical physics, and zero-freeness of the so-called multivariate independence polynomial attached
to the dependency graph; see e.g. [SS05]. The version stated in Theorem 2.2 is among the simplest
and most “user-friendly”.

Before we prove the Lovász Local Lemma, let us first apply it to satisfiability of k-uniform
CNF-formulas.

Proof of Theorem 2.1. For an arbitrary k-uniform CNF-formula Φ = (V, C), and let x ∼ Unif{T,F}V
be a uniformly random assignment. If C1, . . . , Cm is some ordering of the clauses of C, then let
Ai denote the event that clause Ci is not satisfied by x, for each i = 1, . . . ,m. Our goal is to
show that Pr

[⋂m
i=1 Ai

]
> 0, i.e. that there is some positive probability that x satisfies all clauses

simultaneously. This is enough to certify Φ is satisfiable.

3

To apply Theorem 2.2, we verify the two conditions of the lemma. The key is to observe that
for any clause Ci, if we let

J = {j ∈ [m] : Cj does not share any variables with Ci},

then Ai is mutually independent of {Aj}j∈J . Hence, if we consider the graph G whose vertices
correspond to the events A1, . . . , Am, and where we connected Ai ∼ Aj by an edge if and only if
Ci, Cj share at least one variable, then G is a valid dependency graph for A1, . . . , Am. To bound
its maximum degree, observe that by k-uniformity of Φ plus our assumption that every variable is
contained in at most 2k

4k clauses,

|[m] \ J | ≤ 2k

4k
· k =

1

4
· 2k def

= d.

Since Ci was arbitrary, the maximum degree of the aforementioned dependency graph is at most
1
4 ·2

k. On the other hand, since each clause has exact k literals and xv ∼ Unif{T,F} independently
for each variable v ∈ V,

Pr[Ai] ≤ 2−k ≤ 1

e (d+ 1)
.

Invoking Theorem 2.2 then completes the proof.3

2.2 Proof of Theorem 2.2
Expanding using conditional probabilities, observe that

Pr

[
n⋂

i=1

Ai

]
=

n∏
i=1

Pr

Ai

∣∣∣∣∣
i−1⋂
j=1

Aj

 =

n∏
i=1

1− Pr

Ai

∣∣∣∣∣
i−1⋂
j=1

Aj

 .

We are done if we can show that Pr

[
Ai

∣∣∣∣∣ ⋂i−1
j=1 Aj

]
< 1 for all i. We’ve already assumed that

without any conditioning, Pr[Ai] ≤ 1
e(d+1) , and so the main task is to show that conditioning

does not degrade this bound too much when Ai is dependent on at most d other events. This is
formalized in the following lemma.

Lemma 2.3. Suppose A1, . . . , Am satisfy the assumptions of Theorem 2.2. Then for any i =
1, . . . ,m and J ⊆ [m] \ {i},

Pr

Ai

∣∣∣∣∣ ⋂
j∈J

Aj

 ≤ 1

d+ 1
.

Proof. We go by increasing induction on the size of J . The case |J | = 0 is immediate by assumption.
Suppose the claim holds for any J of cardinality |J | ≤ k, for some k ≥ 0. For the inductive step, let
J ⊆ [m] \ {i} have size k+1. Let N(i) denote the neighbors of i in the dependency graph, i.e. the
events on which Ai is dependent. Let us divide J into two sets Jdep = J ∩N(i), Jindep = J \N(i).
Note that we may assume Jdep is nonempty, since otherwise, the conditional probability of interest
is automatically upper bounded by 1

e(d+1) by assumption. By Bayes’ Rule,

Pr

Ai

∣∣∣∣∣ ⋂
j∈J

Aj

 =

Pr

[
Ai ∩

⋂
j∈Jdep

Aj

∣∣∣∣∣ ⋂
j∈Jindep

Aj

]

Pr

[⋂
j∈Jdep

Aj

∣∣∣∣∣ ⋂
j∈Jindep

Aj

] .

3Technically, when d ≤ 2 (i.e. k ≤ 3), one should instead use the version of the LLL which requires Pr[Ai] ≤ 1
4d

for all i = 1, . . . ,m.

4

For the numerator, we have

Pr

Ai ∩
⋂

j∈Jdep

Aj

∣∣∣∣∣ ⋂
j∈Jindep

Aj

 ≤ Pr

Ai

∣∣∣∣∣ ⋂
j∈Jindep

Aj


= Pr[Ai] (Ai is independent of {Aj}j∈Jindep

)

≤ 1

e(d+ 1)
.

For the denominator, if we order Jdep as j1, . . . , jt for t ≤ d, then

Pr

 ⋂
j∈Jdep

Aj

∣∣∣∣∣ ⋂
j∈Jindep

Aj

 =

t∏
s=1

Pr

Ajs

∣∣∣∣∣ ⋂
j∈Jindep

Aj ∩
s−1⋂
p=1

Ajp


=

t∏
s=1

1− Pr

Ajs

∣∣∣∣∣ ⋂
j∈Jindep

Aj ∩
s−1⋂
p=1

Ajp


≥

(
1− 1

d+ 1

)t

(Induction Hypothesis)

≥
(
1− 1

d+ 1

)d

(Using the maximum degree bound)

≥ 1

e
.

Combining the preceding two displays completes the induction step, and hence, the proof.

References
[Aro+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.

“Proof verification and the hardness of approximation problems”. In: J. ACM 45.3
(May 1998), pp. 501–555. issn: 0004-5411. doi: 10.1145/278298.278306 (cit. on p. 2).

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic checking of proofs: a new characteriza-
tion of NP”. In: J. ACM 45.1 (Jan. 1998), pp. 70–122. issn: 0004-5411. doi: 10.1145/
273865.273901 (cit. on p. 2).

[Fei+96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. “In-
teractive proofs and the hardness of approximating cliques”. In: J. ACM 43.2 (Mar.
1996), pp. 268–292. issn: 0004-5411. doi: 10.1145/226643.226652 (cit. on p. 2).

[Hås01] Johan Håstad. “Some Optimal Inapproximability Results”. In: J. ACM 48.4 (July 2001),
pp. 798–859. issn: 0004-5411 (cit. on p. 2).

[KZ97] H. Karloff and U. Zwick. “A 7/8-approximation algorithm for MAX 3SAT?” In: Pro-
ceedings 38th Annual Symposium on Foundations of Computer Science. 1997, pp. 406–
415. doi: 10.1109/SFCS.1997.646129 (cit. on p. 2).

[MT10] Robin A. Moser and Gábor Tardos. “A Constructive Proof of the General Lovász Local
Lemma”. In: J. ACM 57.2 (Feb. 2010). issn: 0004-5411. doi: 10.1145/1667053.
1667060 (cit. on p. 2).

[SS05] Alexander D. Scott and Alan D. Sokal. “The Repulsive Lattice Gas, the Independent-
Set Polynomial, and the Lovász Local Lemma”. In: Journal of Statistical Physics 118.5
(2005), pp. 1151–1261 (cit. on p. 3).

5

https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/226643.226652
https://doi.org/10.1109/SFCS.1997.646129
https://doi.org/10.1145/1667053.1667060
https://doi.org/10.1145/1667053.1667060

	Boolean Satisfiability
	SAT and the Lovász Local Lemma (LLL)
	Beating the Union Bound with Bounded Dependence
	Proof of thm:sym-LLL

