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1 Broadcasting on Trees
A fundamental problem in statistical inference is that of hypothesis testing. We are given a sample
(often called the “observation”) X from some mystery probability distribution, and there are two
possibilities (or hypotheses) µ, ν for what that mystery distribution can be. Our goal is to distin-
guish whether X ∼ µ or X ∼ ν. Of course, one can also study the setting in which we receive
multiple independent samples X1, . . . , Xn.

In this lecture, we consider a special kind of hypothesis testing problem called the reconstruction
problem, which was devised as basic statistical model for evolutionary genetics; see e.g. [Dur08].
To state the problem, we begin by defining a new type of correlated stochastic process called the
broadcast process.

Definition 1 ((Binary Symmetric) Broadcast Process on T̂d). Fix d ∈ N and an error parameter
0 ≤ ϵ ≤ 1/2. The associated (binary symmetric) broadcast process on the infinite d-ary tree T̂d

rooted at r is a random assignment σv ∈ {±1} to each vertex v of T̂d generated as follows:

• We initialize the process by sampling σr ∼ Unif{±1} for the root vertex.

• Independently for each child v of r, we set σv = σr with probability 1− ϵ and σv = −σr with
probability ϵ.

• This process continues recursively in the subtrees rooted at each of the children v of r.

Remark 1. This process can be vastly generalized to allow for larger state spaces, as well as
arbitrary Markov chains for the channels on the edges.

Informally, the vertex r is “broadcasting” its random assignment to its descendants through
channels corrupted by an ϵ amount of noise. The basic question is whether or not we can infer
the assignment of the root vertex given only information about far away vertices. More precisely,
if we let L(n) denote the set of vertices at distance exactly n from the root, then our goal is to
design an estimator σ̂r,n for σr based on only the assignments σL(n) of the vertices in L(n) for n

large. For instance, σ̂r,n could be a deterministic function mapping {±1}L(n) to {±1} which tells
us what to guess upon seeing some specific σL(n). At the highest level of generality, our goal is
to design a function p̂ : {±1}L(n) → [0, 1] which outputs the probability that we should set our
estimator σ̂r,n ∈ {±1} to, say, +1.

Definition 2 (Reconstruction Problem). Fix d ∈ N and 0 ≤ ϵ ≤ 1/2. For an estimator σ̂r,n

given access to only σL(n), write 1+b(σ̂r,n)
2 = Pr [σ̂r,n = σr], where the probability is calculated with

respect to a random draw of the broadcast process σ and the randomness of the estimator, and
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b (σ̂r,n) denotes the “advantage” of the estimator over random guessing.1 We also write 1+b∗

2 for

the optimal success probability, where b∗ = b∗
(
n, T̂d, ϵ

)
≥ 0 is given by maximizing b (σ̂r,n) over

all possible estimators σ̂r,n.

Theorem 1.1 (Kesten–Stigum’1966 [KS66], Bleher–Ruiz–Zagrebnov’1995 [BRZ95]). Fix d ∈ N,
and let θ = 1− 2ϵ for 0 ≤ ϵ ≤ 1/2 (so that ϵ = 1−θ

2 ). Let θc satisfy d · θ2c = 1, and correspondingly
define ϵc =

1
2 − 1

2
√
d
. Then we have the following phase transition for the reconstruction problem:

lim
n→∞

b∗
(
n, T̂d, ϵ

){= 0, if ϵ > ϵc (or equivalently d · θ2 < 1)
> 0, if ϵ < ϵc (or equivalently d · θ2 > 1)

.

Remark 2. The reconstruction problem has also been studied on more general classes of trees; see
e.g. [Eva+00].

Remark 3. It turns out that in the regime ϵ > ϵc, there is some δ = δ(ϵ) > 0 such that we have an
exponential decay rate

b∗
(
n, T̂d, ϵ

)
≲ (1− δ)n.

At criticality, when ϵ = ϵc, a closer inspection of the proof reveals that b∗
(
n, T̂d, ϵ

)
≤ O(1/n). This

decay rate is much slower than the decay in the regime ϵ > ϵc, but it still yields b∗
(
n, T̂d, ϵ

)
→ 0.

Very roughly speaking, this phase transition occurs due to two competing effects: There is the
exponential-in-n growth of the number of vertices which could receive the “signal” σr, but there’s
also the exponential decay of information due to the addition of noise in each step as we increase
the distance n.

A Brief Word on Notation Throughout the remainder of the course, for a random variable
X, we write Law(X) for the associated probability measure X according to which X is distributed.
We also write supp(X) for the support of the distribution Law(X), i.e. the set of values which
occur with positive probability.

2 The Branching Process Perspective

Theorem 1.1 establishes a phase transition phenomenon for the reconstruction problem on T̂d.
Rather than diving head-first into bare-handed calculations, let us first try to relate this to one of
the only phase transition phenomena we’ve already studied, namely percolation on T̂d (or more
generally, Galton–Watson branching processes). Because the broadcast process is about noisy
transmission of information, it is natural to track the number of vertices of T̂d which “receive
uncorrupted information from the root”. One clean way to formalize this is to reframe the broadcast
process as follows:

• We initialize the process by sampling σr ∼ Unif{±1} for the root vertex.

• Independently for each child v of r, we set σv = σr with probability θ = 1−2ϵ, and otherwise
sample σv ∼ Unif{±1}.

• This process continues recursively in the subtrees rooted at each of the children v of r.

In this way of looking at the broadcast process, we see that independently to each child v, the parent
u “perfectly transmits” its assignment with probability θ = 1 − 2ϵ. Otherwise, with probability
2ϵ, the child completely ignores its parent’s assignment and independently samples a fresh bit
according to Unif{±1}. In the former case, let us mark the corresponding edge {u, v} with a 1,
indicating the edge is “open”; otherwise, we mark the edge {u, v} with a 0, indicating the edge is
“closed”. The open edges in T̂d, i.e. the edges which receive a 1, are collectively distributed as
bond percolation on T̂d with edge probability θ = 1− 2ϵ.

1A trivial estimator is to just output a uniformly random element of {±1}. This estimator clearly guesses the
correct answer with probability 1

2
.
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For each n ∈ N, let Zn denote the number of vertices in L(n) which are connected to the root
r by a path of open edges (i.e. edges marked by a 1); for each of these vertices, its assignment,
as well as the assignments of its ancestors, all perfectly copy the assignment of the root. A key
observation is that the collection of random variables Z = {Zn}n∈N is a Galton–Watson branching
process with binomial offspring distribution Bin (d, θ), where recall that θ = 1−2ϵ. This branching
process is critical if and only if dθ = 1 and so we expect a phase transition at this point.

In a future lecture, we will discuss the phase transition at dθ = 1 in the context of the famous
(ferromagnetic) Ising model from statistical physics, which is intimately related to the broadcast
process we’re studying here. However, unfortunately, this transition point doesn’t match the one
in Theorem 1.1.

The reason is that even if θ > 1+ϵ
d , it could be that the number of vertices Zn copying the root

is too small relative to the total number of vertices dn in L(n). In other words, even if there is a
“signal” (whose magnitude is Zn) received by L(n), it is “drowned out” by the sea of noise from
the remaining dn − Zn vertices who receive random bits independent of the root.

Leveraging the Second Moment To get a better sense of how large the expected “signal
strength” E[Zn] needs to be, let’s do some heuristic reasoning. Consider the two hypotheses
µ+
n

def
= Law

(
σL(n) | σr = +1

)
and µ−

n
def
= Law

(
σL(n) | σr = −1

)
for how σL(n) is generated. Because

of the correlations in the broadcast process, we expect the number of +1 assignments An in a
typical sample from µ+

n (resp. µ−
n ) to be greater than (resp. smaller than) 1

2d
n.

Now suppose we are given σL(n) ∼ µ+
n . In order to be confident that σL(n) was indeed drawn

from µ+
n , we want σL(n) to be much more unlikely under the alternative hypothesis µ−

n . In par-
ticular, we need Eµ+

n
[An] to exceed Eµ−

n
[An] by an amount that is at least as large as the typical

fluctuations of An under µ−
n . By linearity of expectation,

Eµ+
n
[An] = E[Zn] +

1

2
· E[dn − Zn] Eµ−

n
[An] =

1

2
· E[dn − Zn],

and so their difference is precisely E[Zn]. One might also guess that the standard deviation of An

under µ−
n is of order ≍ dn/2, since this is the right answer if all assignments of σL(n) were drawn

independently from Unif{±1}. While this isn’t quite correct (due to the correlations in σL(n)), if
we use this as a proxy for the standard deviation, then we need E[Zn] ≳ dn/2. Since E[Zn] = dnθn,
this is equivalent to dθ2 > 1, which is the threshold described by Theorem 1.1.

Ultimately, the key behind this heuristic analysis is the following fairly generic phenomenon:
In order to distinguish between two distributions, the difference in their expectations needs to be
at least on the order of the standard deviation of one of them. We formalize this in Section 3.2.

3 Reinterpreting b∗ as a Metric
The problem of recovering σr becomes easier if ϵ < ϵc is small because the value of σr has a
noticeable effect on the distribution of σL(n). If ϵ < ϵc is small and σr = +1 (resp. σr = −1),
then we expect a disproportionate fraction of the vertices in L(n) to be assigned +1 (resp. −1). It
turns out we can actually interpret b∗ as measuring the size of this effect. More formally, we can
express it as the total variation distance between the distribution of σL(n) conditioned on σr = +1
and the distribution of σL(n) conditioned on σr = −1. To see this, observe that

b∗ = 2 · sup
p̂

Pr [σ̂r,n = σr]− 1

= 2 · sup
p̂

{
1

2
Pr [σ̂r,n = σr | σr = +1] +

1

2
Pr [σ̂r,n = σr | σr = −1]

}
− 1

(Law of Total Probability)

= sup
p̂

{Pr [σ̂r,n = +1 | σr = +1]− Pr [σ̂r,n = +1 | σr = −1]}

= sup
p̂

{
Eσ

[
p̂
(
σL(n)

)
| σr = +1

]
− Eσ

[
p̂
(
σL(n)

)
| σr = −1

]}
= DTV

(
Law

(
σL(n) | σr = +1

)
, Law

(
σL(n) | σr = −1

))
, (Lemma 3.1)
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where the supremum is over all possible functions p̂ : {±1}L(n) → [0, 1] and the probability is with
respect to σ drawn from the broadcast process and σ̂r,n drawn independently from Ber

(
p̂
(
σL(n)

))
given σ. We justify the final step using the following lemma.

Lemma 3.1 (Total Variation Distance and Test Functions). Let µ, ν be two probability measures
over a common state space Ω. Then the total variation distance DTV (µ, ν)

def
= 1

2

∑
ω∈Ω |µ(ω)− ν(ω)|

may be equivalently written as

DTV (µ, ν) = sup
A⊆Ω

|µ(A)− ν(A)| = sup
f :Ω→[0,1]

|Eµ[f ]− Eν [f ]| ,

where we abbreviate µ(A)
def
= Prµ[A] and Eµ[f ]

def
= Eω∼µ[f(ω)].

Proof. For the first equality, observe that since |µ(A)− ν(A)| = |µ(Ω \A)− ν(Ω \A)|,

|µ(A)− ν(A)| = 1

2

∣∣∣∣∣∑
ω∈A

(µ(ω)− ν(ω))

∣∣∣∣∣+ 1

2

∣∣∣∣∣∣
∑

ω∈Ω\A

(µ(ω)− ν(ω))

∣∣∣∣∣∣ ≤ ∥µ− ν∥TV ∀A ⊆ Ω

by the Triangle Inequality. Given this, to establish the first claimed equality, we just need to
exhibit some A ⊆ Ω such that |µ(A)− ν(A)| = ∥µ− ν∥TV. Since the preceding use of the Triangle
Inequality must be tight for such a set, this suggests we should consider A = {ω ∈ Ω : µ(ω) > ν(ω)}.
It is easy to see that this set saturates the inequality in the preceding display.

For the second claimed equality, we view f : Ω → [0, 1] and µ, ν as big vectors in [0, 1]Ω. Then
|Eµ[f ]− Eν [f ]| = |⟨µ− ν, f⟩|, which is convex in f . This convexity immediately implies the second
equality via the natural correspondence between A ⊆ Ω and its {0, 1}-indicator function.

3.1 Designing Estimators

Given the interpretation of b∗ as the total variation distance between µ+
n

def
= Law

(
σL(n) | σr = +1

)
and µ−

n
def
= Law

(
σL(n) | σr = −1

)
, Lemma 3.1 suggests an estimator σ̂MLE

r,n known as the maximum
likelihood estimator : If σL(n) = τ for some τ ∈ {±1}L(n), then

σ̂MLE
r,n =

{
+1, if µ+

n (τ) > µ−
n (τ)

−1, if µ+
n (τ) < µ−

n (τ)
.

This is the optimal estimator whose success probability is precisely 1+b∗

2 .

Remark 4. Given τ ∈ {±1}L(n), one can of course compute the probabilities µ+
n (τ), µ

−
n (τ) through

brute force enumeration of all possible assignments for the vertices in L(1), . . . , L(n−1). However,
if the goal is to just evaluate whether or not µ+

n (τ) > µ−
n (τ), then we can actually do this in time

polynomial in the size of the input τ . The idea is that by Bayes’ Rule, µ+
n (τ) > µ−

n (τ) holds if and
only if

Pr
[
σr = +1 | σL(n) = τ

]
> Pr

[
σr = −1 | σL(n) = τ

]
.

These two quantities can be computed via recursion. The specific algorithm is a message-passing
algorithm known in the literature as belief propagation, the tree recursion, or the sum-product
algorithm, and is extremely well-studied. We will discuss this in greater depth in Section 5; see
also Appendix B for a derivation of this recursion.

Another natural estimator to consider is simply the one given by majority vote:

σ̂MAJ
r,n

def
= sign (Sn) where Sn

def
=

∑
v∈L(n)

σv.

We note that the maximum likelihood and majority estimators are not equal.

Exercise 1. Prove that σ̂MLE
r,n ̸= σ̂MAJ

r,n .

While these two estimators have different advantages, i.e. b
(
σ̂MLE
r,n

)
̸= b

(
σ̂MAJ
r,n

)
, fortunately for

us, it will turn out that limn→∞ b
(
σ̂MAJ
r,n

)
> 0 if and only if limn→∞ b

(
σ̂MLE
r,n

)
> 0. This will be a

consequence of the proof of Theorem 1.1. We note that there are many other natural broadcast
processes for which these two regimes do not coincide [Mos01].
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3.2 Second Moment Bounds on Total Variation Distance
Before we move to the proof of Theorem 1.1, we will need a technical lemma for bounding the
total variation distance. This formalizes the intuition we mentioned in Section 2, where the “signal
strength” (i.e. difference in expectations between two hypotheses) needs to exceed the “noise level”
(i.e. the typical fluctuations). To state it, for a probability measure µ on a state space Ω and a
function f : Ω → R, we abbreviate Eµ[f ]

def
= Eω∼µ[f(ω)] and Varµ(f)

def
= Varω∼µ(f(ω)).

Lemma 3.2. Let X,Y be two real-valued random variables, and let W have law 1
2Law(X) +

1
2Law(Y ).2 Then we have the lower bound

DTV (Law(X), Law(Y )) ≥ 1

4
· (E[X]− E[Y ])

2

Var (W )
.

In particular, if µ, ν are two probability measures on a common state space Ω, then

DTV (µ, ν) ≥ 1

4
· sup
f :Ω→R

(Eµ[f ]− Eν [f ])
2

Varµ+ν
2

(f)
.

For intuition, we also provide a kind of converse to the above.

Lemma 3.3. Let µ, ν be two probability measures on a common state space Ω. Then

DTV (µ, ν)
2 ≤ 1

4
· sup
f :Ω→R

(Eµ[f ]− Eν [f ])
2

Varµ(f)
.

Remark 5. For comparison, note that by the Law of Total Variance,

Varµ+ν
2

(f) =
1

2
Varµ(f) +

1

2
Varν(f) +

1

4
(Eµ[f ]− Eν [f ])

2
.

Note that that the third term is necessary to ensure the lower bound never exceeds 1, since
DTV(µ, ν) ∈ [0, 1] for any µ, ν. So, if (Eµ[f ]− Eν [f ])

2 ≫ Varµ(f),Varν(f), then Lemma 3.2 yields
DTV(µ, ν) ≥ 1−o(1). On the other hand, if (Eµ[f ]− Eν [f ])

2 ≪ Varµ(f),Varν(f), then Lemma 3.3
yields DTV(µ, ν) ≤ o(1).

Proofs for these lemmas are largely based on Cauchy–Schwarz, and provided in Appendix A.

4 Proof of Theorem 1.1 in the Case ϵ < ϵc

In this section, we work in the regime ϵ < ϵc, or equivalently, dθ2 > 1. From our previous analysis,
we have that

b∗ ≥ DTV

(
Law

(
σ̂MAJ
r,n | σr = +1

)
, Law

(
σ̂MAJ
r,n | σr = −1

))
= DTV (Law (Sn | σr = +1) , Law (Sn | σr = −1)) .

Note the final equality holds due to symmetry between ±1. More concretely, the random variables
Sn | σr = −1 and −Sn | σr = +1 have the same law, and so

{s ∈ Z : Pr[Sn = s | σr = +1] > Pr[Sn = s | σr = −1]} = {s ∈ Z : s > 0}

and we may apply Lemma 3.1.
We will show that when ϵ < ϵc, the right-hand side is lower bounded by a universal constant

even in the large n limit. We will achieve this by combining the second moment method with
Lemma 3.2, where Xn = Sn | σr = +1 and Yn = Sn | σr = −1; note that Wn = Sn without
any conditioning. We now compute the quantities involved in Lemma 3.2. If we consider again
the Galton–Watson branching process Z = {Zn}n∈N we discussed previously, which has offspring
distribution Bin(d, θ) with mean dθ, then observe that Xn is equal to Zn plus a sum of dn − Zn

many (dependent) Unif{±1} random variables. Hence,

E[Xn] = E[Zn] = dnθn and E[Yn] = −E[Zn] = −dnθn.

2Note that W can be sampled by first tossing a fair coin, and then setting W = X (resp. W = Y ) if the coin
comes up heads (resp. tails).
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We now calculate the variance of Sn. Using the fact that E[Sn] = 0, we have

Var (Sn) = E
[
S2
n

]
=

∑
u,v∈L(n)

E[σuσv].

Now, for any u, v ∈ L(n), their assignments σu, σv are correlated. To compute E[σuσv], we consider
their least common ancestor w = LCA(u, v) in the tree T̂d. If w ∈ L(ℓ) for some 0 ≤ ℓ ≤ n − 1,
then by the Law of Total Expectation and the fact that an independently sampled Unif{±1} is
assigned when a child fails to copy its parent’s assignment, we have

E [σuσv] = Pr [σu, σv both copy σw]

= Pr [σu copies σw] · Pr [σv copies σw]

= θ2(n−ℓ).

Combining with the fact that # {v ̸= u : LCA(u, v) ∈ L(ℓ)} = dn−ℓ−1(d − 1) for every u ∈ L(n)
and every 0 ≤ ℓ ≤ n− 1, we have

Var (Sn) =
∑

u∈L(n)

E
[
σ2
u

]
+

∑
u∈L(n)

n−1∑
ℓ=0

∑
v ̸=u

LCA(u,v)∈L(ℓ)

E[σuσv]

= dn + dn−1(d− 1)

n∑
k=1

(
dθ2
)k

= dn + dn
((

dθ2
)n − 1

)
· (d− 1)θ2

dθ2 − 1
.

Relating back to the informal discussion in Section 2, if dθ2 < 1, then
√
Var(Sn) ≍ dn/2, as if

the assignments in σL(n) were independently drawn from Unif{±1}. Conversely, the second term
dominates if dθ2 > 1. Since it is of order d2nθ2n · (d−1)θ2

dθ2−1 , combining with 1
4 (E[Xn]− E[Yn])

2
=

d2nθ2n, we expect b∗ to be lower bounded by roughly the ratio of these quantities, i.e. dθ2−1
(d−1)θ2 .

This is indeed what we find:

b∗ ≥ DTV (Law (Sn | σr = +1) , Law (Sn | σr = −1)) (Previous display)

≥ 1

4
· (E[Xn]− E[Yn])

2

Var (Sn)
(Lemma 3.2)

=
d2nθ2n

dn + dn ((dθ2)
n − 1) · (d−1)θ2

dθ2−1

=
1

(dθ2)
−n

+
(
1− (dθ2)

−n
)
· (d−1)θ2

dθ2−1

→ dθ2 − 1

(d− 1)θ2
. (In the n → ∞ limit, using dθ2 > 1)

As a sanity check, this is at most 1 since θ ≤ 1. It is positive since dθ2 > 1 by assumption, which
completes the proof of Theorem 1.1.

5 Bonus Material: Proof of Theorem 1.1 in the Case ϵ > ϵc

Now suppose ϵ < ϵc, i.e. dθ2 < 1. Our goal is to show that b∗
(
n, T̂d, ϵ

)
→ 0 as n → ∞. Towards

this, observe that we can apply Bayes’ Rule to obtain that

DTV

(
Law

(
σL(n) | σr = +1

)
, Law

(
σL(n) | σr = −1

))
=

1

2

∑
τ∈{±1}L(n)

∣∣Pr [σL(n) = τ | σr = +1
]
− Pr

[
σL(n) = τ | σr = −1

]∣∣
=

1

2

∑
τ∈{±1}L(n)

∣∣∣∣Pr [σr = +1 | σL(n) = τ
] Pr[σL(n) = τ ]

Pr[σr = +1]
− Pr

[
σL(n) = τ | σr = −1

] Pr[σL(n) = τ ]

Pr[σr = −1]

∣∣∣∣
= E

∣∣Pr [σr = +1 | σL(n)

]
− Pr

[
σr = −1 | σL(n)

]∣∣ .
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This suggests that we look at the quantity

Mn(τ)
def
= Pr

[
σr = +1 | σL(n) = τ

]
− Pr

[
σr = +1 | σL(n)

]
= E

[
σr | σL(n) = τ

]
, ∀τ ∈ {±1}L(n).

We write Mn for the corresponding random variable, where the randomness comes from drawing
σL(n) according to the broadcast process. Due to connections with the (ferromagnetic) Ising model,
this quantity is sometimes referred to as the magnetization of the root vertex. Our goal will be
to show that E |Mn| decays as n → ∞. Rather than study |Mn|, we will instead show step-wise
decay for the second moment, which is more tractable.

Lemma 5.1. We have the inequality E |Mn| ≤
√

E [M 2
n ].

Proof. The claim is equivalent to nonnegativity of the variance of |Mn|.

Our goal will be to show that

E
[
M 2

n

]
≤ dθ2 · E

[
M 2

n−1

]
, (1)

since our assumption that dθ2 < 1 implies that E |Mn| ≤
√
E [M 2

n ] is decaying to zero exponentially
fast as n → ∞.

The benefit of switching to the viewpoint of Mn is that we can use recursion to understand
the probabilities Pr[σr = +1 | σL(n) = τ ] and Pr[σr = −1 | σL(n) = τ ]. To state this precisely,
let u1, . . . , ud be the children of the root r, and for each i = 1, . . . , d, let Li(n− 1) ⊆ L(n) denote
the vertices in the subtree rooted at ui which are at distance n− 1 from ui. For τ ∈ {±1}L(n), we
write τi ∈ {±1}Li(n−1) for the restriction of τ to Li(n− 1). Now let M

(i)
n−1(τi) be given by

M
(i)
n−1(τi)

def
= Pr

[
σui

= +1 | σLi(n−1) = τi
]
− Pr

[
σui

= −1 | σLi(n−1) = τi
]
.

Note the corresponding random variables M
(1)
n−1, . . . ,M

(d)
n−1 are correlated through the random

root assignment σr if (τ1, . . . , τd) ∼ µn. However, they become independent if we fix the value of
σr, i.e. if (τ1, . . . , τd) ∼ µ±1

n . What will be important for us is that Law
(
M

(i)
n−1

)
= Law (Mn−1)

individually for each i = 1, . . . , d. This is because marginally, σui
is distributed as Unif{±1} and

the assignment σLi(n−1) is independent of σr given σui , so Law
(
σLi(n−1)

)
= Law

(
σL(n−1)

)
.

Finally, let f(x)
def
= 1−x

1+x , and for d ∈ N, define

gd (x1, . . . , xd)
def
= f

(
d∏

i=1

f(xi)

)
.

We have the following theorem.

Theorem 5.2. For any τ ∈ {±1}L(n),

Mn(τ) = gd

(
θ · M (1)

n−1(τ1), . . . , θ · M
(d)
n−1(τd)

)
. (2)

In particular, we have the distributional recursion

Mn
D≡ gd

(
θ · M (1)

n−1, . . . , θ · M
(d)
n−1

)
. (3)

Let us content ourselves for the moment with an informal explanation of how this recursion is
derived; we formally prove this in Appendix B. The idea is that because σLi(n−1) is independent of
σr given the value of σui

, we can express Pr
[
σr = +1 | σL(n) = τ

]
as a function of the probabilities

Pr
[
σui

= ±1 | σLi(n−1) = τi
]
, for any τ ∈ {±1}L(n). The specific function is known in the literature

as belief propagation, the tree recursion, or the sum-product algorithm, and is extremely well-
studied. Typically, it is discussed in the context of spin systems like the Ising model; we derive it
using Bayes’ Rule in Appendix B and postpone a more in-depth treatment of spin systems to a
future lecture.
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Taking Theorem 5.2 as a given, to establish an inequality like Eq. (1), our goal is now to bound
the rather complicated right-hand side of Eq. (3) by something like

E

f ( d∏
i=1

f
(
θ · M (i)

n−1

))2
 ≤ θ2

d∑
i=1

E
[(

M
(i)
n−1

)2]
= dθ2 · E

[
M 2

n−1

]
. (4)

With this as our aim, let us begin by massaging Eq. (3). We build up gd inductively.

Lemma 5.3. For every d ∈ N, we have that

gd (x1, . . . , xd) = g2 (gd−1 (x1, . . . , xd−1) , xd) ,

where g2 is explicitly given by the expression

g2(x, y) =
1− 1−x

1+x · 1−y
1+y

1 + 1−x
1+x · 1−y

1+y

=
x+ y

1 + xy
.

Proof. This is a straightforward calculation, taking advantage of the fact that f(f(x)) = x.

The combinatorial interpretation of the conjunction of Theorem 5.2 and Lemma 5.3 is the
following. Imagine we inductively build up our infinite d-ary tree T̂d rooted at r by first building
d trees T1, . . . , Td, where each tree Ti is an infinite d-ary tree rooted at ui along with a single edge
joining ui to a special leaf vertex ri. Independently in each Ti, we can run the same broadcast
process initialized from ri. A direct calculation reveals that θ · E

∣∣∣M (i)
n−1

∣∣∣ is precisely the total
variation distance/optimal advantage b∗ (n, Ti, ϵ) with respect to Ti. If we merge the vertices
r1, . . . , rd into a single vertex, then we recover T̂d. The purpose of the function gd is to compute
the effect this merge operation induces on the reconstruction probability for the root r. Lemma 5.3
captures the step-by-step effect of merging r1, r2, then merging r1, r2, r3, etc.

Towards an inequality analogous to Eq. (4), we would like to establish that the factor 1
1+xy is

at most 1 in absolute value, at least in expectation when we plug in our random variables. This
expression looks unwieldy, so let us attempt to “linearize” g2. Using the identity 1

1+r = 1−r+ r2

1+r ,
we have that

g2(x, y) = (x+ y)

(
1− xy +

x2y2

1 + xy

)
= (x+ y)− x2y − xy2 + x2y2 · g2(x, y)

≤ (x+ y)− x2y − xy2 + x2y2, (For x, y ≥ −1)

where in the final step, we used the fact that f ([−1,+∞]) = R≥0 ∪ {+∞}; in particular, −1 is
not in the range of f in our context. Our goal will be to ensure that the terms −x2y− xy2 + x2y2

are negative, at least in expectation, when we plug in our random variables. For this, we need one
final rather curious set of identities.

Lemma 5.4. Recalling the notation µ+
n = Law

(
σL(n) | σr = +1

)
and µn = Law

(
σL(n)

)
, we have

the identities

EσL(n)∼µ+
n
[Mn] = EσL(n)∼µn

[
M 2

n

]
EσL(n)∼µ+

n

[
M

(i)
n−1

]
= θ · EσL(n−1)∼µn−1

[
M 2

n−1

]
EσL(n)∼µ+

n

[(
M

(i)
n−1

)2]
= EσL(n−1)∼µn−1

[
M 2

n−1

]
,

for any i = 1, . . . , d.

We prove Lemma 5.4 at the end of this section. With these tools in hand, we prove our final
contraction inequality. We do the case d = 2 here (with suppressed notation); the general case
follows by a straightforward induction, using Lemma 5.3 to add one child subtree at a time. We
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have

Eµn

[
M 2

n

]
= Eµ+

n
[Mn] (Lemma 5.4)

= Eµ+
n

[
g2

(
θ · M (1)

n−1, θ · M
(2)
n−1

)]
(Using Eq. (2))

≤ θ · Eµ+
n

[
M

(1)
n−1

]
+ θ · Eµ+

n

[
M

(2)
n−1

]
− θ3 · Eµ+

n

[(
M

(1)
n−1

)2]
· Eµ+

n

[
M

(2)
n−1

]
− θ3 · Eµ+

n

[
M

(1)
n−1

]
· Eµ+

n

[(
M

(2)
n−1

)2]
+ θ4 · Eµ+

n

[(
M

(1)
n−1

)2]
· Eµ+

n

[(
M

(2)
n−1

)2]
(Independence under µ+

n )

= 2θ2 · Eµn−1

[
M 2

n−1

]
− θ4 · Eµn−1

[
M 2

n−1

]2 (Lemma 5.4)

≤ 2θ2 · Eµn−1

[
M 2

n−1

]
.

All that remains to complete the proof of Theorem 1.1 in the ϵ > ϵc regime is to prove Lemma 5.4
and Theorem 5.2. The former is proved here, while the latter is relegated to Appendix B.

Proof of Lemma 5.4. For this first identity, observe that

EσL(n)∼µ+
n
[Mn] = EσL(n)∼µn

[
Pr
[
σL(n) | σr = +1

]
Pr
[
σL(n)

] (
Pr
[
σL(n) | σr = +1

]
− Pr

[
σL(n) | σr = −1

])]
(Change of densities)

= EσL(n)∼µn

[
2Pr

[
σr = +1 | σL(n)

] (
Pr
[
σL(n) | σr = +1

]
− Pr

[
σL(n) | σr = −1

])]
(Bayes’ Rule)

= EσL(n)∼µn

[
M 2

n + Mn

]
(∗)

= EσL(n)∼µn

[
M 2

n

]
. (Using EσL(n)∼µn

[Mn] = 0 by symmetry)

For (∗), we used the fact that Pr
[
σr = +1 | σL(n)

]
+ Pr

[
σr = −1 | σL(n)

]
= 1 implies

2Pr
[
σr = +1 | σL(n)

]
= 1 +

(
Pr
[
σr = +1 | σL(n)

]
− Pr

[
σr = −1 | σL(n)

])
.

This proves the first identity. For the second identity, we use the Law of Total Expectation to
obtain

EσL(n)∼µ+
n

[
M

(i)
n−1

]
= θ · E

[
M

(i)
n−1 | ui copies r directly

]
+ (1− θ) · E

[
M

(i)
n−1 | σui ∼ Unif{±1}

]
= θ · EσL(n−1)∼µ+

n−1
[Mn−1] + (1− θ) · EσL(n−1)∼µn−1

[Mn−1]

= θ · EσL(n−1)∼µn−1

[
M 2

n−1

]
. (First identity)

For the final identity, we again use the Law of Total Expectation, similar to the above, to obtain

EσL(n)∼µ+
n

[(
M

(i)
n−1

)2]
= θ · EσL(n−1)∼µ+

n−1

[
M 2

n−1

]
+ (1− θ) · EσL(n−1)∼µn−1

[
M 2

n−1

]
.

But EσL(n−1)∼µ+
n−1

[
M 2

n−1

]
= EσL(n−1)∼µ−

n−1

[
M 2

n−1

]
= EσL(n−1)∼µn−1

[
M 2

n−1

]
by symmetry of the

assignments ±1, and so the above is equal to EσL(n−1)∼µn−1

[
M 2

n−1

]
.
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A Proofs for Second Moment Total Variation Bounds
Proof of Lemma 3.2. Without loss of generality, we may shift X,Y,W by the same constant to
ensure they have mean zero, while preserving the total variation distance between Law(X), Law(Y ).
Hence, we assume E[X] = E[Y ] = E[W ] = 0 in the remainder of the proof.

Observe that supp(W ) = supp(X) ∪ supp(Y ), and so

DTV (Law(X), Law(Y )) =
1

2

∑
ω∈supp(W )

|Pr[X = ω]− Pr[Y = ω]|

=
∑

ω∈supp(W )

|Pr[X = ω]− Pr[Y = ω]|
2 · Pr[W = ω]

· Pr[W = ω]

= E [|f(W )|] ,

where f(ω)
def
= Pr[X=ω]−Pr[Y=ω]

Pr[X=ω]+Pr[Y=ω] takes values in the interval [−1, 1]. Hence, we may lower bound
the above by

E
[
f(W )2

]
≥ E [W · f(W )]

2

E[W 2]
(Cauchy–Schwarz)

=
1

Var(W )
·

 ∑
ω∈supp(W )

ω · Pr[W = ω] · Pr[X = ω]− Pr[Y = ω]

2 · Pr[W = ω]

2

(E[W ] = 0 and definition of f)

=
1

4
· (E[X]− E[Y ])

2

Var(W )
.

For the second claim, observe that f : Ω → R is any function, then letting X = f(x) for x ∼ µ and
Y = f(y) for y ∼ ν, we have

DTV (µ, ν) ≥ DTV (Law(X), Law(Y )) ≥ 1

4
· (Eµ[f ]− Eν [f ])

2

Varµ+ν
2

(f)
.

Since f was arbitrary, the proof is complete.

Proof of Lemma 3.3. The key idea is to use an intermediate quantity, namely the χ2-squared di-
vergence, which is defined as

χ2(ν ∥µ) def
= Eω∼µ

[(
1− ν(ω)

µ(ω)

)2
]
.

Note that this is simply the variance of the function dν
dµ (ω)

def
= ν(ω)

µ(ω) , often referred to as the density
of ν with respect to µ. With this, we have by Cauchy–Schwarz that

DTV (µ, ν)
2
=

1

4
· Eω∼µ

[∣∣∣∣1− ν(ω)

µ(ω)

∣∣∣∣]2 ≤ 1

4
· χ2(ν ∥µ).
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On the other hand, we claim that the χ2-squared divergence admits the variational formula

χ2(ν ∥µ) = sup
f :Ω→R

(Eµ[f ]− Eν [f ])
2

Varµ(f)
.

To see this, observe that for any f , abusing notation and identifying Eµ[f ] with the constant
function Eµ[f ] · 1, we have

Eµ[f ]− Eν [f ] = Eν (f − Eµ[f ])

= Eµ

[
dν

dµ
· (f − Eµ[f ])

]
(Change of Measure)

= Eµ

[(
dν

dµ
− 1

)
· (f − Eµ[f ])

]
. (Using Eµ [f − Eµ[f ]] = 0)

It follows that

(Eµ[f ]− Eν [f ])
2
= Eµ

[(
dν

dµ
− 1

)
· (f − Eµ[f ])

]2
≤ Eµ

[(
dν

dµ
− 1

)2
]
· Eµ

[
(f − Eµ[f ])

2
]

(Cauchy–Schwarz)

= Varµ

(
dν

dµ

)
·Varµ(f)

= χ2(ν ∥µ) ·Varµ(f). (Definition of χ2(ν ∥µ))

Rearranging proves that χ2(ν ∥µ) is lower bounded by the given variational formula. To prove
equality, we need to exhibit a function f : Ω → R which achieves equality. For this, we simply use
the density dν

dµ . Plugging in this function, we have

Eµ

[
dν

dµ

]
− Eν

[
dν

dµ

]
= 1− Eµ

[(
dν

dµ

)2
]
= −Varµ

(
dν

dµ

)
= −χ2(ν ∥µ).

Plugging this back into the ratio in the variational expression completes the proof.

B Proof of Theorem 5.2
We express Pr

[
σr = +1 | σL(n) = τ

]
in terms of the quantities Pr

[
σui

= ±1 | σLi(n−1) = τi
]
. To do

this, first observe that because the assignments σL1(n−1), . . . , σLd(n−1) are independent conditioned
on the value of σr, we have

Pr
[
σL(n) = τ | σr = +1

]
=

d∏
i=1

Pr
[
σLi(n−1) = τi | σr = +1

]
.

Now, using the Law of Total Probability,

Pr
[
σLi(n−1) = τi | σr = +1

]
= (1− ϵ) · Pr

[
σLi(n−1) = τi | σui

= +1
]
+ ϵ · Pr

[
σLi(n−1) = τi | σui

= −1
]

= 2 · Pr
[
σLi(n−1) = τi

]
·
(
1 + θ · M (i)

n−1(τi)
)
.

These calculations all hold mutatis mutandis for the case σr = −1. Since

Pr
[
σr = +1 | σL(n) = τ

]
=

Pr
[
σL(n) = τ | σr = +1

]
Pr
[
σL(n) = τ | σr = +1

]
+ Pr

[
σL(n) = τ | σr = −1

] ,
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which follows by Bayes’ Rule and Pr[σr = +1] = Pr[σr = −1] = 1/2, plugging in the above
calculations and canceling out the factors of 2 · Pr

[
σLi(n−1) = τi

]
yield

Pr
[
σr = +1 | σL(n) = τ

]
=

∏d
i=1

(
1 + θ · M (i)

n−1(τi)
)

∏d
i=1

(
1 + θ · M (i)

n−1(τi)
)
+
∏d

i=1

(
1− θ · M (i)

n−1(τi)
)

Pr
[
σr = −1 | σL(n) = τ

]
=

∏d
i=1

(
1− θ · M (i)

n−1(τi)
)

∏d
i=1

(
1 + θ · M (i)

n−1(τi)
)
+
∏d

i=1

(
1− θ · M (i)

n−1(τi)
) .

This is one way of expressing the belief propagation equations, although they are more commonly
written in terms of ϵ and the conditional marginal probabilities Pr

[
σui

= ±1 | σLi(n−1) = τi
]
rather

than θ and M
(i)
n−1(τi). Subtracting these two expressions and dividing both the numerator and

denominator by common factors then yield the recursion for Mn(τ) stated in Theorem 5.2.
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