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1 A Refined Second Moment Method
Chebyshev’s Inequality is a useful way to bound the probability that a random variable deviates
from its expectation. We used it several times in the previous lecture when analyzing Erdös–Rényi
random graphs. However, if our goal is to establish lower bounds on the probability that a random
variable is positive (e.g. a certain event occurs or a certain structure exists), the following version
of the second moment method tends to be more useful.

Theorem 1.1 (Paley–Zygmund Inequality; Second Moment Method). Let X ≥ 0 be a nonnegative
random variable. For any 0 ≤ θ ≤ 1, we have

Pr [X > θ · E[X]] ≥ (1− θ)2 · E[X]2

E[X2]

Proof. A standard trick for bounding expectations of random variables is to insert indicator func-
tions for when the random variable lies in a certain range. In our setting, we have

E[X] = E
[
X · 1X≤θ·E[X]

]
+ E

[
X · 1X>θ·E[X]

]
≤ θ · E[X] +

√
E[X2] · Pr[X > θ · E[X]]. (Cauchy–Schwarz)

Rearranging then completes the proof.

It is instructive to compare this with Chebyshev’s Inequality, which yields

Pr [X > θ · E[X]] ≥ 1− Var (X)

(1− θ) · E[X]2
.

This is a vacuous bound if E[X2] > (2−θ) ·E[X]2. The advantage of Theorem 1.1 is that it remains
meaningful whenever E[X2] ≤ C · E[X]2, where C ≥ 1 is allowed to be any constant.

2 Galton–Watson Branching Processes
Let us now introduce a fundamental class of stochastic processes called branching processes, which
we will analyze using the first and second moment methods. These processes are extremely useful
as a way to make predictions about the behavior of more complex stochastic processes, including
the local structure of sparse Erdös–Rényi random graphs and various natural statistical inference
problems; we’ll discuss these in more depth later.

Definition 1 (Galton–Watson Branching Process). Let ξ be a probability distribution over N =
{0, 1, 2, . . . }. The Galton–Watson Branching Process with offspring distribution ξ is an infinite
sequence Z of discrete N-valued random variables Z0, Z1, . . . generated as follows:
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• We initialize Z0 = 1 with probability 1.

• For each ℓ ∈ N, given Zℓ, we let Zℓ+1 be the sum of Zℓ-many independent samples from ξ.
More precisely, we let Zℓ+1 =

∑Zℓ

i=1Xℓ+1,i where Xℓ+1,1, . . . , Xℓ+1,Zt
∼ ξ are independent.

One should imagine a Galton–Watson process as generating a (possibly infinite) random tree
rooted at a vertex r. In each step of the process of generating this tree, we take each of the vertices
in the most recently generated level ℓ and spawn a random number of children, each independently
drawn from ξ. This defines the set of vertices in the next level ℓ+1 of the tree. Note that for each
ℓ, the random variable Zℓ counts the number of vertices in level ℓ.

You can take the offspring distribution ξ to be your favorite probability distribution over N.
Some common ones include the following:

• Uniform: ξ = Unif{0, . . . , d}, i.e. ξ(k) = 1
d+1 for k = 0, . . . , d.

• Poisson: ξ = Poi(λ), i.e. ξ(k) = λke−λ

k! for k ∈ N, where λ ∈ R≥0 is the mean of ξ.

• Binomial: ξ = Bin(d, p), i.e. ξ(k) =
(
d
k

)
pk(1 − p)d−k for k = 0, . . . , d (more on this in

Section 3).

• Geometric: ξ = Geo(p), i.e. ξ(k) = (1− p)k · p for k ∈ N.

Let us begin by computing the means and variances of a Galton–Watson branching process.

Lemma 2.1. Let {Zℓ}ℓ∈N be a Galton–Watson branching process with offspring distribution ξ. If
ξ has finite expectation µ = EX∼ξ[X] <∞, then,

E[Zℓ] = µℓ, ∀ℓ ∈ N.

If, in addition, ξ has finite variance σ2 = EX∼ξ
[
(X − µ)2

]
<∞, then

Var (Zℓ) = σ2µℓ−1
ℓ−1∑
k=0

µk, ∀ℓ ∈ N.

Proof. We prove the claims by induction on ℓ ∈ N; the base cases ℓ = 0, 1 are immediate. Suppose
the claims hold for some ℓ ∈ N. Then

E [Zℓ+1] =

∞∑
k=0

Pr[Zℓ = k] · E [Zℓ+1 | Zℓ = k]

=

∞∑
k=0

Pr[Zℓ = k] · k · µ

= µ · E[Zℓ]
= µℓ+1. (Induction Hypothesis)

Similarly,

E
[
Z2
ℓ+1

]
=

∞∑
k=0

Pr[Zℓ = k] · E
[
Z2
ℓ+1 | Zℓ = k

]
=

∞∑
k=0

Pr[Zℓ = k] ·
(
k · EX∼ξ[X

2] + k(k − 1) · EX∼ξ[X]2
)

= σ2 · µℓ + µ2E[Z2
ℓ ].

It follows that

Var (Zℓ+1) = E
[
Z2
ℓ+1

]
− µ2ℓ

= σ2 · µℓ + µ2 Var (Zℓ)

= σ2 · µℓ + σ2µ2µℓ−1
ℓ−1∑
k=0

µk (Induction Hypothesis)

= σ2µℓ
ℓ∑

k=0

µk (Simplifying)

as desired.
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2.1 The Extinction Phase Transition
If we imagine Zℓ as the number of individuals in the ℓth generation of some population of organisms,
then a key event of interest is extinction. Note that if Zℓ = 0 for some ℓ ∈ N, then Zt = 0 for all
t ≥ ℓ.

Definition 2 (Extinction Event). We define the extinction event of a branching process as
⋃
ℓ∈NEℓ,

where Eℓ is the event that Zℓ = 0.

Fact 2.2. We always have PrZ [Extinction] ≥ ξ(0).

Definition 3 (Criticality). We say a Galton–Watson branching process with offspring distribution
ξ having finite mean µ = EX∼ξ[X] <∞ is subcritical if µ < 1, critical if µ = 1, and supercritical
if µ > 1.

One of the most fundamental results on the behavior of branching processes is the phase
transition for the extinction probability. In a sense, it is a shadow of the “primordial” phase
transition concerning the behavior of the exponential function x 7→ bx as the base b is varied
around 1. We begin with the following lemma.

Lemma 2.3. For a probability distribution ξ over N, define its generating function ψ = ψξ by the
formal power series

ψξ(s)
def
= EX∼ξ

[
sX

]
=

∞∑
k=0

ξ(k) · sk,

which is well-defined as a function over [0, 1] (i.e. the power series converges), and satisfies ψ(1) =
1. Then for a Galton–Watson branching process Z with offspring distribution ξ, the extinction
probability PrZ [Extinction] must be a solution to the fixed point equation s = ψξ(s).1

Proof. One way to think about generating Z = {Zℓ}ℓ∈N is via recursion:

• First, we set Z0 = 1 and sample Z1 ∼ ξ.

• We then independently generate Z1-many Galton–Watson branching processes, i.e. for each
k = 1, . . . , Z1, we independently sample Z(k) =

{
Z

(k)
ℓ

}
ℓ∈N

.

• Finally, we set Zℓ+1 =
∑Z1

k=1 Z
(k)
ℓ for each ℓ ∈ N.

This self-similarity implies that

Pr [Z goes extinct] =
∞∑
k=0

Pr[Z1 = k] · Pr [Z goes extinct | Z1 = k]

=

∞∑
k=0

ξ(k) · Pr
[
Z(1), . . . ,Z(k) all go extinct

]
=

∞∑
k=0

ξ(k) ·
k∏
i=1

Pr
[
Z(i) goes extinct

]
, (Independence)

since the only way for Z to go extinct is if each Z(k) goes extinct. But since Z and the Z(k) all
have the same law, the above simplifies to

Pr
Z
[Extinction] =

∞∑
k=0

ξ(k) · Pr
Z
[Extinction]k.

This shows that PrZ [Extinction] must be a fixed point of ψ.

Theorem 2.4. Let Z = {Zℓ}ℓ∈N be a Galton–Watson branching process with offspring distribution
ξ having finite mean µ and variance. Let ψ denote the generating function of ξ.

1It is an easy exercise to prove that for every ℓ ∈ N, the generating function of the random variable Zℓ is precisely
the iterated composition ψ◦ℓ of ψ.
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• If the process is subcritical (i.e. µ < 1), then s = 1 is the unique fixed point of ψ, and
PrZ [Extinction] = 1.

• If the process is supercritical (i.e. µ > 1), then there exists p∗ = p∗(ξ) ∈ [0, 1) such that the
set of fixed points of ψ is precisely {p∗, 1}. Moreover, PrZ [Extinction] = p∗.

• If the process is critical (i.e. µ = 1), and σ2 > 0, then s = 1 is again the unique fixed point
of ψ, and PrZ [Extinction] = 1.

• If the process is critical (i.e. µ = 1), and σ2 = 0, then the set of fixed points of ψ is the
entire interval [0, 1], and PrZ [Extinction] = 0.

To classify the fixed points of ψ and prove that the extinction probability is equal to the smallest
such fixed point, we crucially take advantage of the following analytic properties of ψ, which can
be immediately deduced by differentiating ψ.

Lemma 2.5. Let ξ be an offspring distribution over N. Then its generating function ψ satisfies
the following properties.

• ψ is strictly increasing (unless ξ(0) = 1, in which case ψ ≡ 1).

• ψ is convex, i.e. ψ
(
s+t
2

)
≤ ψ(s)+ψ(t)

2 for all s, t ∈ [0, 1]. Moreover, if ξ(k) > 0 for some
k ≥ 2, then this convexity is strict, i.e. the inequality is strict whenever s ̸= t.

Proof of Theorem 2.4. We establish each case in turn.

• If µ < 1, then since ψ lies above its tangent at 1, we have that ψ(s) > s for all s ∈ [0, 1).
Hence, s = 1 is the unique fixed point of ψ and PrZ [Extinction] = 1. Another way to see that
the extinction probability must be 1 is by the fact that

∞∑
ℓ=0

E[Zℓ] =
∞∑
ℓ=0

µℓ =
1

1− µ
<∞,

which is impossible if Pr [Zℓ > 0,∀ℓ ∈ N] > 0.

• If µ > 1, then ψ(s) < s for s in a neighborhood of 1. Since ψ(0) ≥ 0 as well, there must exist
p∗ ∈ [0, 1) such that p∗ = ψ (p∗) by the Intermediate Value Theorem. This other p∗ ̸= 1 is
unique by strict convexity of ψ. To show that PrZ [Extinction] = p∗, it suffices to establish
PrZ [Extinction] < 1, or equivalently, Pr [Zℓ > 0,∀ℓ ∈ N] > 0. Note that

Pr [Zℓ > 0,∀ℓ ∈ N] = lim
L→∞

Pr [Zℓ > 0,∀0 ≤ ℓ ≤ L] = lim
ℓ→∞

Pr [Zℓ > 0] .

Hence, it suffices to show that there is some constant C > 0, possibly depending on µ, σ2,
such that Pr [Zℓ > 0] ≥ C for all ℓ ∈ N. For this, let us use the second moment method.
Observe that

Pr[Zℓ > 0] ≥ E[Zℓ]2

E [Z2
ℓ ]

(Paley–Zygmund Inequality; Theorem 1.1)

=
µ2ℓ

µ2ℓ + σ2µℓ−1
∑ℓ−1
k=0 µ

k
(Lemma 2.1)

=
1

1 + σ2

µ−1

(
1
µ − 1

µℓ+1

) (Using µ > 1 and
∑ℓ−1
k=0 µ

k = µℓ−1
µ−1 )

≥ 1

1 + σ2/µ2
. (Monotonicity in ℓ)

This establishes that Pr [Zℓ > 0,∀ℓ ∈ N] > 0 and so PrZ [Extinction] = p∗.

• If µ = 1 and σ2 > 0, then ξ(k) > 0 for some k ≥ 2. This means ξ is strictly convex,
and therefore lies strictly above its tangent line at 1 over [0, 1). This tangent line is pre-
cisely the identity function, and so s = 1 is again the unique fixed point of ψ. This means
PrZ [Extinction] = 1.

• If µ = 1 and σ2 = 0, then ψ(s) = s and the set of fixed points is all of [0, 1]. Furthermore,
ξ(1) = 1 and so Zℓ = 1 with probability 1 for all ℓ ∈ N. This means PrZ [Extinction] = 0.
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3 Percolation in the d-ary Tree
Recall that (bond) percolation with parameter p on a graph G = (V,E) is given by a random
subgraphH = (V, F ) where each edge e ∈ E is included in F independently with probability p. The
study of percolation originated in mathematical physics, where it was used as a basic mathematical
model of porous materials. The idea was to represent a block of material as an infinite graph like
the integer lattice Z3, where each edge allows liquid to “flow through it” independently with some
probability p. The main question physicists were interested in was whether or not there exists an
infinite path permitting water to flow through the entire block of material.

There is an extremely rich history and theory of percolation on all sorts of lattices (and graphs
more broadly). In this section, we’ll be looking at percolation on the infinite d-ary tree, denoted
as T̂d. This is the infinite tree rooted at a distinguished vertex r where every vertex in the tree has
exactly d children. We will be interested in the percolation event, that is, the event E∞ that there
exists an infinite component within the randomly generated subgraph; note that we do not require
that this component contains the root r. Writing Prp[·] for the probability of an event under bond
percolation on T̂d with parameter p, we will be interested in the critical probability

pc

(
T̂d

)
def
= sup

{
p : Pr

p
[E∞] = 0

}
.

From the theory of Galton–Watson branching processes we discussed above, it is natural to
guess that pc

(
T̂d

)
= 1/d, since this is the threshold at which the expected number of children a

vertex is connected to is equal to 1. Let us now make this precise.

Theorem 3.1. For every d ∈ N, we have pc
(
T̂d

)
= 1/d.

Proof. For each vertex v ∈ T̂d, let Cv denote the unique connected component of the sampled
subgraph containing v, restricted to the subtree of T̂d rooted at v. Note that

E∞ =
⋃
v∈T̂d

{Cv is infinite}.

Since the subtree rooted at v is isomorphic to T̂d itself, all the components Cv have the same law
as Cr itself. Given this, it is enough to study Cr.

Observe that if we let Zℓ denote the number of vertices which are at distance ℓ from the
root vertex r, then {Zℓ}ℓ∈N is distributed as a Galton–Watson branching process with offspring
distribution ξ given by ξ(k) = Bin(d, p). Moreover, Cr is infinite if and only if this branching
process does not go extinct. Since the mean of this offspring distribution is µ = d · p, if p > 1/d,
then the branching process is supercritical and there already is strictly positive probability that
Cr is infinite by Theorem 2.4. This tells us that pc

(
T̂d

)
≤ p for every p > 1/d, i.e. pc

(
T̂d

)
≤ 1/d,

since

Pr
p
[E∞] ≥ Pr

p
[Cr is infinite] > 0, ∀p > 1/d.

On the other hand, if p < 1/d, then this branching process is subcritical and Prp [Cr is infinite] = 0
by Theorem 2.4. Hence, by the Union Bound, we have

Pr
p
[E∞] ≤

∑
v∈T̂d

Pr
p
[Cv is infinite] = 0, ∀p < 1/d.

This shows that pc
(
T̂d

)
≥ p for every p < 1/d. In particular, pc

(
T̂d

)
≥ 1/d.

Note that as a corollary, we get that Prp[E∞] exhibits a sharp phase transition at pc
(
T̂d

)
.

Corollary 3.2. For every d ∈ N, we have that

Pr
p
[E∞] =

1, if p > pc

(
T̂d

)
0, if p < pc

(
T̂d

) .
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Note that the p < pc

(
T̂d

)
case just follows from the definition of pc

(
T̂d

)
. In the case p >

pc

(
T̂d

)
, the claim just follows from Kolmogorov’s zero-one law. This is actually quite intuitive,

since the fact that our branching process is supercritical means that there is some positive constant
probability that the unique connected component containing the root is itself infinite. On the off
chance that it is finite, then it has some maximum depth L. But the vertices at depth L+ 1 then
each independently spawn their own branching process within their own subtree, each of which
again has some positive probability of extending to infinity. This process continues indefinitely and
so eventually, at least one of the branching processes must grow an infinite connected component.

4 Foreshadowing: Local Structure of Sparse Erdös–Rényi
The branching process perspective is also useful for studying Erdös–Rényi random graphs in the
sparse regime, where pn = d

n for constant d. This is well below the connectivity threshold, and so
a randomly sampled graph is disconnected with high probability. However, in a future lecture, we
will prove that another fascinating phase transition occurs at d = 1. If d < 1, not only is the graph
disconnected with high probability, but all its connected components are tiny (of size O(log n)).
On the other hand, when d > 1, the graph contains a unique connected component of size Ω(n);
this is often referred to as the giant component in Erdös–Rényi.

We can actually already give an intuitive explanation for this phenomenon using the theory
of branching processes we’ve developed. Let us examine the size of the connected component
containing some arbitrarily fixed vertex v ∈ V . We can do this by performing a breadth-first
search in the graph and revealing the randomly chosen edges on an as-needed basis. For ℓ ∈ N, let
Nℓ denote the number of vertices at distance exactly ℓ away from v. Then the size of the connected
component containing v is

∑n
ℓ=0Nℓ. Moreover, Nℓ = 0 implies Nj = 0 for all j ≥ ℓ.

• The size N1 of the depth-1 neighborhood is a random variable drawn from Bin(n− 1, pn) ≈
Bin(n, d/n).

• Given N1, the number of vertices N2 at distance 2 away from v is drawn from Bin(n−N1 −
1, pn), which is again approximately Bin(n, d/n) since N1 ≤ o(1) with very high probability.

• These approximations hold while the number of visited vertices in the breadth-first search
is o(n). We expect these balls to grow at most exponentially fast in the radius, so we can
expect to continue this analysis for o(log n) steps.

Now, it is well-known that the binomial Bin(n, d/n) is extremely well-approximated by the Poisson
distribution Poi(d) with the same expectation in the sparse regime d = O(1);2 we will prove this
in a future lecture. Hence, at least up to ℓ ≤ o(log n), we expect N0, . . . , Nℓ to evolve as a Galton–
Watson branching process with offspring distribution Poi(d). If d < 1, the process is subcritical
and the expected size of the component is 1

1−d . We also expect the branching process to die off
quickly. If d > 1, the process is supercritical and the process will survive until Ω(n) vertices have
been included in the component. We will prove these claims rigorously in a future lecture.

2The Central Limit Theorem applies when d/n is a constant independent of n.
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