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1 Stochastic Euclidean TSP
In this lecture, we apply martingale-based arguments to study average-case instances of the
quintessential problem in combinatorial optimization and operations research: the Traveling Sales-
person Problem (TSP) in Euclidean space. In an instance of this problem, we are given n points
P ⊆ Rd, and the goal is to find a tour, i.e. a sequence of points p(1), . . . ,p(m) ∈ P such that every
point of P is visited at least once (in particular, m ≥ n), minimizing the total (Euclidean) distance
traveled:

Cost
(
p(1), . . . ,p(m)

)
def
=

m−1∑
i=1

∥∥∥p(i+1) − p(i)
∥∥∥
2
.

We write OPT = OPT(P) for the cost of an optimal tour; note that by the Triangle Inequality,
we can assume any optimal tour is a permutation of P. Computing OPT and an optimal tour is
a classic NP-hard optimization problem even in the Euclidean case, although unlike SAT or the
chromatic number, we do have polynomial-time approximation schemes [Aro98; Mit99].

Let us now consider average-case instances of this problem, where for convenience, we assume
the vectors in P are drawn independently according to Unif[0, 1]d. Our goal is to study the random
variable OPT.

Theorem 1.1 (Beardwood–Halton–Hammersley [BHH59]). For every d ≥ 2, there is a positive
constant β(d) such that

OPT

n1− 1
d

→ β(d), almost surely as n → ∞.

Remark 1. It is known that β(d)√
d

→ 1√
2πe

as d → ∞ at a rate of O
(

log d
d

)
[Rhe92].

We note that this result generalizes far beyond the distribution Unif[0, 1]d. The scaling of n1− 1
d

is fairly intuitive: Imagine an idealized world where the hypercube [0, 1]d is partitioned into a
“(hyper)grid” of n subcubes all having side-lengths ≍ n−1/d, and the points p1, . . . ,pn are placed
at the vertices of these subcubes in an evenly spaced manner. It is easy to see (e.g. by considering
the case d = 2 first, and then inducting on d) that the natural tour which traverses the points
“linearly” along each dimension has cost ≍ n1− 1

d , since each step contributes ≍ n−1/d (the side-
length of any subcube) to the distance. Based on this intuition, we will prove E [OPT] ≍ n1− 1

d in
Section 2. We further establish concentration for OPT.

Theorem 1.2 (Rhee–Talagrand [RT87]; see also [RT89; Rhe91]). There exists a universal numer-
ical constant C > 0 such that for every d ≥ 2, we have the tail bound

Pr [|OPT− E [OPT]| ≥ t] ≤ 2 exp

(
− t2

C(n, d)

)
, ∀t ≥ 0,
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where

C(n, d) =

{
O (log n) , if d = 2

Od

(
n1− 2

d

)
, if d > 2

.

Remarkably, for the plane d = 2, Rhee–Talagrand have sharpened the result to true sub-
Gaussian tails: For some absolute constant C > 0,

Pr [|OPT− E [OPT]| ≥ t] ≤ 2 exp
(
−Ct2

)
, ∀t ≥ 0.

Theorem 1.2 implies that the typical deviation of OPT is at most of order n
1
2−

1
d if d > 2, and of

order
√
log n if d = 2, which are both much smaller than the expectation E [OPT] ≍ n1− 1

d .
We prove Theorem 1.2 in Section 3.

2 Bounding the Expectation
In this section, we bound the order of the expectation.

Theorem 2.1. For every d ≥ 2, we have E [OPT] ≍ n1− 1
d . More precisely, there are constants

Ad, Bd > 0 (depending only on d), such that Ad · n1− 1
d ≤ E [OPT] ≤ Bd · n1− 1

d for all n, d ≥ 2.

For convenience, we define

dist(p,P)
def
= inf

q∈P
∥p− q∥2

for any subset P ⊆ [0, 1]d and any point p ∈ [0, 1]d. The key technical result we will need to prove
Theorem 2.1, as well as Theorem 1.2, is the following.

Proposition 2.2. Fix an arbitrary point p ∈ [0, 1]d. If p1, . . . ,pn ∼ Unif[0, 1]d are drawn inde-
pendently and we set P = {p1, . . . ,pn}, then

E [dist (p,P)] ≍ 1

n1/d
.

We prove Proposition 2.2 at the end of the section.

Proof of Theorem 2.1. For the lower bound, observe that since every point pi must be visited, we
have the lower bound

OPT ≥
n∑

i=1

dist (pi,P \ {pi}) .

Taking expectations of both sides yields

E [OPT] ≥
n∑

i=1

E [dist (pi,P \ {pi})]

≳ n · (n− 1)−1/d (Proposition 2.2)

≳ n1− 1
d .

For the upper bound, we prove the following stronger claim: For any set of n points in [0, 1]d, there
exists a tour with total cost at most ≲ n1− 1

d . To show this, imagine we partition the hypercube
[0, 1]d into a “(hyper)grid” of ≍ n subcubes C1, . . . , Cn, each of side-length ≍ n−1/d. At the center
of each subcube Ci, we place a new point qi; note the n new points q1, . . . , qn are evenly spaced
throughout [0, 1]d. We will construct a tour for the points p1, . . . ,pn, q1, . . . , qn with cost at most
n1− 1

d ; this is enough for our purposes by the Triangle Inequality.
Without loss of generality, assume the points q1, . . . , qn are ordered in such a way that

n−1∑
i=1

∥qi − qi+1∥2 ≲ n1− 1
d .

It is not difficult to see that such a tour always exists. For instance, in dimension 2, one can choose
the “snake” tour, i.e. the one which alternates between left-to-right and right-to-left traversal
within each row of the grid. One can inductively construct analogous tours in higher dimensions.
Given this, we build a tour for p1, . . . ,pn, q1, . . . , qn as follows:
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• Within each Ci, we construct an arbitrary tour Ti of the points {P ∩ Ci} ∪ {qi} which begins
and ends at qi. This determines how we visit points within each subcube.

• In the order i = 1, . . . , n, we alternate between completely traversing the “subcube tour” Ti,
and moving from qi to qi+1.

For each i = 1, . . . , n, let ki = |P ∩ Ci|. The cost of the tour we’ve constructed is upper bounded
by

n∑
i=1

Cost (Ti) +
n−1∑
i=1

∥qi − qi+1∥2 ≲
√
d ·

n∑
i=1

ki + 1

n1/d
+ n1− 1

d ≲ n1− 1
d .

The first inequality follows from the fact that each subcube Ci has side-lengths upper bounded by
n−1/d, and so diam (Ci) ≲

√
d · n−1/d. The second inequality just follows from

∑n
i=1 ki = n.

2.1 Proof of Proposition 2.2
By the layered cake representation of an expectation, we have

E [dist (p,P)] =

∫ √
d

0

Pr [dist (p,P) ≥ R] dR

=

∫ √
d

0

Pr
q∼Unif[0,1]d

[dist(p, q) ≥ R]
n
dR. (Using independence of p1, . . . ,pn)

Observe that there are constants 0 < c(d) < C(d) < 1, depending only on d, such that the volume
of the radius-R Euclidean ball around p, intersected with [0, 1]d, has volume

c(d) ·Rd ≤ Vol
(
B2(p, R) ∩ [0, 1]d

)
≤ C(d) ·Rd, ∀0 ≤ R ≤

√
d.

Using this, we have

Pr
q∼Unif[0,1]d

[dist(p, q) ≥ R] ≥ 1− C(d) ·Rd

Letting R0 =
(

1
C(d)·n

)1/d

, we obtain the lower bound

E [dist (p,P)] ≥ R0 · Pr
q∼Unif[0,1]d

[dist(p, q) ≥ R0]
n ≥

(
1

C(d) · n

)1/d

·
(
1− 1

n

)n

≳
1

n1/d
.

For the upper bound, if we let R0 =
(

1
c(d)·n

)1/d

instead, and let T =
⌈√

d/R0

⌉
, then we have

E [dist (p,P)] ≤
T∑

t=0

∫ (t+1)R0

tR0

(
1− c(d) ·Rd

)n
dR ≤

∞∑
t=0

R0 · e−td = Od(1) ·R0 ≲
1

n1/d
.

3 Concentration for OPT

In this section, we prove the concentration estimate stated in Theorem 1.2. As a first attempt,
observe that

OPT (P) = inf
Tours p(1),...,p(m)∈P

m−1∑
i=1

∥∥∥p(i+1) − p(i)
∥∥∥
2
,

viewed as a function of n-tuples of points, is 2
√
d-Lipschitz with respect to Hamming distance on

Xn, where X = [0, 1]d; this is an immediate consequence of the fact that the diameter of [0, 1]d
with respect to Euclidean distance is

√
d. Hence, McDiarmid’s Inequality applies and we get

Pr [|OPT− E [OPT]| ≥ t] ≤ 2 exp

(
− t2

8dn

)
, ∀t ≥ 0.

This is nice since we get order-
√
n deviation with probability at most some constant, say, 1%. This

is pretty good for large d, but is still rather far from Theorem 1.2 for small d, especially when
d = 2 and E [OPT] ≍

√
n.
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3.1 Refining the Bound: Proof of Theorem 1.2
The basic idea is to consider again the Doob martingale given by Yk = E [OPT | P≤k] for k =
0, . . . , n, where we write P≤k = {p1, . . . ,pk}; we also define P>k = P \ P≤k, and P−k = P \ {pk}.
Rather than applying McDiarmid’s Inequality, which uses a uniform bound on the Lipschitzness of
OPT, we will combine Azuma–Hoeffding with a more refined bound on the almost sure boundedness
of the increments Yk − Yk−1.

We will need the following geometric result.

Lemma 3.1. Let P ⊆ [0, 1]d,p ∈ [0, 1]d be arbitrary. Then

OPT (P) ≤ OPT (P ∪ {p}) ≤ OPT (P) + 2 · dist (p,P)

Proof. The first inequality is immediate. For the second, we can build a tour for P ∪{p} by taking
an optimal tour for P and appending the moves q → p → q, where q ∈ P minimizes ∥p− q∥2.
This yields a tour with cost OPT(P) + 2 · dist (p,P).

Let us use it to bound the increments and deduce the desired concentration estimate.

Corollary 3.2. For every k, |Yk − Yk−1| ≤ min
{
2
√
d, Od(1)

(n−k)1/d

}
almost surely.

Proof. Arbitrarily fix the first k points P≤k = {p1, . . . ,pk} ⊆ [0, 1]d. Our goal is to show that

|E [OPT | P≤k]− E [OPT | P≤k−1]| ≤ min

{
2
√
d,

Od(1)

(n− k)1/d

}
.

The first bound is immediate from the diameter of [0, 1]d. For the second bound, observe that we
may perfectly couple the random choices of the remaining points P>k = {pk+1, . . . ,pn} to obtain
the upper bound

|E [OPT | P≤k]− E [OPT | P≤k−1]|
≤ sup

p′
k+1∈[0,1]d

Epk+1,...,pn
[|OPT (p1, . . . ,pk, . . . ,pn)− OPT (p1, . . . ,p

′
k, . . . ,pn)|]

(Triangle Inequality)

≤ 2 · sup
p′
k+1∈[0,1]d

Epk+1,...,pn
[dist (pk,P−k) + dist (p′

k,P−k)] (Lemma 3.1)

≤ 2 · sup
p′
k+1∈[0,1]d

Epk+1,...,pn
[dist (pk,P>k) + dist (p′

k,P>k)]

≤ Od(1)

(n− k)1/d
, (Proposition 2.2)

To complete the proof of Theorem 1.2, we let ck = min
{
2
√
d, Od(1)

(n−k)1/d

}
for k = 1, . . . , n by

Corollary 3.2. Observe that

C(n, d) =

n∑
k=1

c2k ≤ Od(1)

n−1∑
k=1

1

(n− k)2/d
≤ Od(1) ·

∫ n

1

1

x2/d
dx ≤

{
O (log n) , if d = 2

Od

(
n1− 2

d

)
, if d > 2

.

Invoking Azuma–Hoeffding then concludes the proof.
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