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1 How to Stop a Stochastic Process
This lecture is all about stopping times for martingales. These are particularly useful for analyzing
hitting times for stochastic processes, e.g. given a sample trajectory of such a process {Xn}n≥0

viewed as an evolution over time, when is the first time n such that the state of Xn comes to
possess some property of interest.

Definition 1 (Stopping Time). Let {Xn}n∈N be a sequence of random variables. We say a random
variable T taking values in N∪{+∞} is a stopping time with respect to {Xn}n∈N if for every n ∈ N,
the event {T = n} is completely determined by X0, . . . , Xn.

As with how we defined martingales, the proper level of generality in which a stopping time
should be defined is with respect to a filtration. Since we won’t need this in the bulk of this lecture,
we relegate a formal discussion to Appendix A.

One should imagine there being a random object which is evolving over time according to
{Xn}n∈N. The essential feature behind a stopping time is that to decide whether or not to stop
the evolution, you only have to look at the past and present. For example, if you are at a casino,
then all of the following are valid stopping times:

• “the first round of blackjack you lose”

• “773 rounds after your first loss”

• “the 13th round you win”

• “the third time you triple your money”

However, “the last time you lose” is not a valid stopping time, since you would need to see the
future in order to decide whether or not to leave the casino right now.

Fact 1.1. If T is a stopping time with respect to {Xn}n∈N, then so is T ∧ n
def
= min{T, n} for any

fixed deterministic n ∈ N.

As we argued in the previous lecture, for a martingale {Yn}n≥0 with respect to {Xn}n≥0,
we always have E[Yn] = E[Y0] for every fixed deterministic n ∈ N. One might naturally expect
that the analogous statement, when we replace n by a random stopping time T , also holds, i.e.
E [YT ] = E [Y0]. Unfortunately, this definitely cannot be true in full generality. For example,
suppose {Xn}n≥0 is a sequence of independent Unif{±1} random variables, Yn =

∑n
k=0 Xk for

each n ≥ 0 (initialized at Y0 = 0), and T = inf {n ∈ N : Sn = +1}. Then by definition, we have
E [YT ] = +1 ̸= 0 = E [Y0].

The following theorem formalizes several generic conditions under which we do get the “expected
conclusion” E [YT ] = E [Y0]. It is among the most fundamental results for stopping times, and also
goes by the name of Doob’s Optional Sampling Theorem.

1



Theorem 1.2 (Optional Stopping Theorem). Let {Yn}n∈N be a martingale and T be a stopping
time, both with respect to another sequence of random variables {Xn}n∈N. Assume at least one of
the following three conditions hold:

• There exists a finite constant L ≥ 0 such that Pr [T ≤ L] = 1.

• There exists a finite constant B ≥ 0 such that |YT∧n| ≤ B almost surely for all n ∈ N.

• E[T ] < ∞ and there exists a finite constant C ≥ 0 such that

E [|Yn − Yn−1| | X0, . . . , Xn−1] ≤ C

on the event {T ≥ n},1 for all n ∈ N.

Then the random variable YT satisfies E[YT ] = E[Y0].

Remark 1. Regarding the third condition, oftentimes it is not obvious that E[T ] < ∞ holds, even
if T is finite almost surely. However, as we will see in the proofs for Lemmas 2.2 and 3.2, a generic
way to establish E[T ] < ∞ is to again consider the truncated stopping times T ∧n. If one can show
that E[T ∧ n] is uniformly bounded in n by a finite constant, then by the Monotone Convergence
Theorem, we have E[T ] < ∞.

To prove Theorem 1.2, we will need one key lemma.

Lemma 1.3. Let {Yn}n∈N be a martingale and T be a stopping time, both with respect to another
sequence of random variables {Xn}n∈N. For each n ∈ N, define a new random variable Zn

def
= YT∧n.

Then {Zn}n∈N is a martingale with respect to {Xn}n∈N.

Proof. By inserting indicator random variables, we can write

Zn =

n−1∑
k=0

Yk · 1T=k + Yn · 1T≥n.

Now, observe that the random variables 1T=0, . . . ,1T=n−1, Y0, . . . , Yn−1 and 1T≥n = 1 − 1T≤n−1

are all completely determined by X0, . . . , Xn−1; only Yn isn’t. Hence,

E [Zn | X0, . . . , Xn−1] =

n−1∑
k=0

Yk · 1T=k + E [Yn | X0, . . . , Xn−1] · 1T≥n

=

n−2∑
k=0

Yk · 1T=k + Yn−1 · 1T=n−1 + Yn−1 · 1T≥n︸ ︷︷ ︸
=Yn−1·1T≥n−1

({Yn}n∈N is a martingale w.r.t. {Xn}n∈N)

= Zn−1.

Proof of Theorem 1.2. Lemma 1.3 and its proof already gives the conclusion of the theorem in the
case where T is almost surely bounded. Indeed, if there is a finite L ≥ 0 such that Pr[T ≤ L] = 1,
then YT = ZL for {Zn}n∈N as in Lemma 1.3. Hence, E[YT ] = E[ZL] = E[Z0] = E[Y0], where in the
middle equality, we used the fact the {Zn}n∈N is a martingale.

Now, we consider the other two conditions of the theorem. In either case, we know that YT∧n

converges to YT pointwise. We have already established E[YT∧n] = E[Y0] for all n ∈ N, and so all
that remains is to establish E[YT∧n] → E[YT ]. This is an immediate consequence of the Bounded
Convergence Theorem when we assume the second condition. For the third condition, we use the
Dominated Convergence Theorem. To do this, we just need to construct a random variable W
such that |YT∧n| ≤ W almost surely for all n ∈ N, and E[W ] < ∞.

1Since T is a stopping time and the event {T ≥ n} is the complement of
⋃n−1

k=0{T = k}, it is completely
determined by the values of X0, . . . , Xn−1. Hence, we just mean that the expected increments are bounded for all
values of X0, . . . , Xn−1 for which the event {T ≥ n} occurs.
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Define

W
def
= |Y0|+

∞∑
k=0

|Yk+1 − Yk| · 1T≥k+1.

Then

|YT∧n| =

∣∣∣∣∣
n−1∑
k=0

Yk · 1T=k + Yn · 1T≥n

∣∣∣∣∣
=

∣∣∣∣∣
n−2∑
k=0

Yk · 1T=k + Yn−1 · 1T≥n−1 + (Yn − Yn−1) · 1T≥n

∣∣∣∣∣
= · · · (Induction/Telescoping)

=

∣∣∣∣∣Y0 +

n−1∑
k=0

(Yk+1 − Yk) · 1T≥k+1

∣∣∣∣∣
≤ W. (Triangle Inequality)

Finally, we show E[W ] is finite using our assumptions.

E[W ] = E [|Y0|] +
∞∑
k=0

E [|Yk+1 − Yk| · 1T≥k+1]

= E [|Y0|] +
∞∑
k=0

E [E [|Yk+1 − Yk| · 1T≥k+1 | X0, . . . , Xk]]

= E [|Y0|] +
∞∑
k=0

E [E [|Yk+1 − Yk| | X0, . . . , Xk] · 1T≥k+1]

(1T≥k+1 = 1− 1T≤k is determined by X0, . . . , Xk)

≤ E [|Y0|] + C ·
∞∑
k=0

Pr [T ≥ k + 1] (Second assumption)

= E [|Y0|] + C · E[T ] (Layered cake representation for an expectation)
< ∞. (First assumption)

Applying the Dominated Convergence Theorem yields E[Y0] = limn→∞ E[YT∧n] = E[YT ] as desired.

2 Hitting Times for Random Walk on Z
Consider a p-biased random walk on Z. More precisely, let {Xn}n≥0 is a sequence of i.i.d. random
variables where Xi = +1 with probability p, and Xi = −1 with probability 1 − p. Consider
the biased random walk Sn =

∑n
k=0 Xk with initialization S0 = 0; note that {Sn}n∈N is a valid

martingale with respect to {Xn}n∈N if and only if p = 1/2. For each x ∈ Z, let Tx = inf{n : Sn =
x}, which is a valid stopping time.

The gambling interpretation for this set up is the following: Suppose you enter a casino with A
dollars in your pocket for some A > 0. You will leave the casino if either you go broke (i.e. you lose
all A dollars), or you win at least B dollars for some B > 0 (e.g. you double your money by setting
B = A). If we let Sn denote your “winnings”, then Sn = B if and only if you leave after gaining B
dollars, and Sn = −A if and only if you lose all your money. Each Xn denotes the outcome of one
round of play, with you either winning or losing a dollar. The probability 0 ≤ p ≤ 1/2 represents
how “fair” the casino is, with p = 1/2 representing perfect fairness. Naturally, you are interested
in the probability of losing all your money (i.e. Pr[T−A < TB ]), and also the amount of time you
are expected to stay at the casino.

We begin with the simplest case where p = 1/2 and the casino is fair.

Lemma 2.1. Suppose p = 1/2 and A,B > 0. Then

Pr [T−A < TB ] =
B

A+B
and E [min {T−A, TB}] = A ·B.

3



Proof. Observe that by the definition of T , we have |ST∧n| ≤ max{A,B} almost surely for all
n ∈ N. Hence, we may invoke the Optional Stopping Theorem (with the second condition satisfied)
to deduce that

0 = E[S0] = E[ST ] = Pr[T = TB ] ·B − Pr[T = T−A] ·A.

Rearranging and noting that Pr[T−A < TB ] = Pr[T = T−A] then establishes the first claim. For
the second, observe that the new sequence of random variables Yn

def
= S2

n − n is also a martingale
w.r.t. {Xn}n≥0; this is the “second moment martingale” we saw in the previous lecture. Clearly,
it satisfies the bounded increments property. If we can also establish that E[T ] < ∞, then we may
again use the Optional Stopping Theorem (with the third condition satisfied) to obtain

0 = E[Y0] = E[YT ] = E[S2
T ]− E[T ].

Rearranging would then yield

E[T ] = E[S2
T ] = Pr[T = T−A] ·A2 + Pr[T = TB ] ·B2 =

B

A+B
·A2 +

A

A+B
·B2 = A ·B

as desired.
All that remains is to verify E[T ] < ∞. To show this, for −A ≤ k ≤ B, let τk denote the number

of steps it takes for the random walk to reach −A or B when initialized at τk; note that T = τ0.
Since E[τk] = 1 + E[τk−1]+E[τk+1]

2 for each k, and we have the boundary conditions τ−A = τB = 0
with probability 1, it is clear that E[τk] is finite for all −A ≤ k ≤ B. One can also solve the
resulting linear system for the values E[τk] for all −A ≤ k ≤ B, yielding an alternative proof that
E[T ] = A ·B.

2.1 Asymmetric Gambler’s Ruin
Now let’s consider the unfair case, where p < 1/2. The proof is conceptually the same, although
requires a little more calculation.

Lemma 2.2. Suppose 0 ≤ p < 1/2 and A,B > 0. Then

Pr [T−A < TB ] =
1−

(
p

1−p

)B
1−

(
p

1−p

)A+B

Pr [TB < ∞] =

(
p

1− p

)B

Pr [T−A < ∞] = 1

E [T−A] =
A

1− 2p
.

Proof. Consider the function φ(x)
def
=
(

1−p
p

)x
. We first claim that the random variables {φ(Sn)}n≥0

form a martingale with respect to {Xn}n≥0. Indeed,

E [φ(Sn) | X0, . . . , Xn−1] = E

[
φ(Sn−1) ·

(
1− p

p

)Xn

∣∣∣∣∣X0, . . . , Xn−1

]

= φ(Sn−1) · E

[(
1− p

p

)Xn

∣∣∣∣∣X0, . . . , Xn−1

]
(Sn−1 is determined by X0, . . . , Xn−1)

= φ(Sn−1) ·

(
p ·
(
1− p

p

)
+ (1− p) ·

(
1− p

p

)−1
)

= φ(Sn−1).
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Now let T = min {T−A, TB} denote the time you leave casino. Then

0 ≤ φ (ST∧n) ≤
(
1− p

p

)B

, ∀n ∈ N,

and so we may invoke the Optional Stopping Theorem with stopping T using the second condition.
It follows that

1 = E[φ(S0)] = E[φ(ST )] = Pr[T = T−A] · φ(−A) + Pr[T = TB ] · φ(B).

Rearranging and noting that Pr[T−A < TB ] = Pr[T = T−A] then establishes the first identity. For
the second, note that

{TB < ∞} =

∞⋃
A=1

{TB < T−A} {T−A < ∞} =

∞⋃
B=1

{T−A < TB}.

Hence, using the previously obtained formula for Pr[T−A < TB ], we have

Pr[TB < ∞] = lim
A→∞

Pr[TB < T−A] =

(
p

1− p

)B

Pr[TA < ∞] = lim
A→∞

Pr[T−A < TB ] = 1.

Finally, to compute E[T−A], observe that while {Sn}n∈N isn’t a martingale with respect to {Xn}n∈N
(since p ̸= 1/2), it is easy to see that Sn − (2p − 1)n is. Hence, if we could apply the Optional
Stopping Theorem to Sn − (2p− 1)n, then we would obtain

0 = E[S0] = E[ST−A
− (2p− 1)T−A] = (1− 2p) · E[T−A]−A,

which upon rearranging, would yield the claim. Hence, we must verify one of the three conditions
of the Optional Stopping Theorem for the martingale {Sn − (2p− 1)n}n∈N and the stopping time
T−A.

Unfortunately, while we proved T−A to be almost surely finite, it is not almost surely bounded.
Hence, ST−A∧n − (2p− 1) · (T−A ∧n) also fails to be almost surely bounded uniformly in n. So, we
verify the third condition. Boundedness of the expected increments is immediate, and so it suffices
to prove that E[T−A] < ∞. To do this, we use the idea outlined in Remark 1. Let us consider again
the stopping times T−A ∧ n, which are almost surely bounded by n. By the Optional Stopping
Theorem,

0 = E[S0] = E[ST−A∧n − (2p− 1) · (T−A ∧ n)] = (1− 2p) · E[T−A ∧ n] + E[ST−A∧n].

Of course, E[ST−A∧n] ≥ −A since ST−A
= −A, and Sn ≥ −A if T−A ≥ n. Hence, we see

that E[T−A ∧ n] ≤ A
1−2p for all n ∈ N. By the Monotone Convergence Theorem, the limit

limn→∞ E[T−A ∧ n] exists and equals E[T−A] since T−A ∧ n → T−A pointwise. It follows that
E[T−A] ≤ A

1−2p < ∞. Hence, the above use of the Optional Stopping Theorem is valid, and we
conclude E[T−A] =

A
1−2p .

3 Supermartingales and Submartingales
The application of martingales to simple random walk on Z described in Section 2 is nice and slick,
but arguably isn’t the most convincing, since Lemmas 2.1 and 2.2 are also obtainable through
bare-handed calculations without too much effort. This is made possible by the Markovian nature
of those stochastic processes; the random variable Sn was independent of S0, . . . , Sn−2 given Sn−1.2

To better appreciate the full power of martingale theory, let us now move to a setting where
there is no Markovian structure whatsoever. We begin by substantially generalizing the theory of
martingales.

2To get a sense of how such an argument could work, consider the setting of Lemma 2.2. We can write a recurrence
like Pr[TB < ∞] = (1 − p) · Pr[TB+1 < ∞] + p · Pr[TB−1 < ∞]. Rearranging then yields a fixed-point equation of
the form x = x−p

x(1−p)
for the ratios of consecutive terms, which has roots 1 and p

1−p
. This at least explains why

Pr[TB < ∞] has the form
(

p
1−p

)B
. Such calculations are tractable only if the process has a Markovian structure.
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Definition 2 (Supermartingale/Submartingale). We say a (possibly finite) sequence of random
variables {Yn}n≥0 is a supermartingale (resp. submartingale) with respect to another sequence of
random variables {Xn}n≥0 if for every n,

• E [|Yn|] < ∞,

• Yn is a function of X0, . . . , Xn, and

• E[Yn+1 | X0, . . . , Xn] ≤ Yn (resp. E[Yn+1 | X0, . . . , Xn] ≥ Yn).

Roughly speaking, supermartingales (resp. submartingales) tend to decay (resp. grow) faster
than a standard martingale.3 We can construct them from standard martingales extremely easily.
The following lemma is an immediate consequence of Jensen’s Inequality.

Lemma 3.1. Let {Yn}n≥0 be a martingale with respect to {Xn}n≥0.

• If f : R → R is a convex function satisfying E [|f(Yn)|] < ∞ for all n, then {f(Yn)}n≥0 is a
submartingale with respect to {Xn}n≥0.

• If f : R → R is a concave function satisfying E [|f(Yn)|] < ∞ for all n, then {f(Yn)}n≥0 is
a supermartingale with respect to {Xn}n≥0.

Naturally, supermartingales (resp. submartingales) with bounded increments satisfy the upper
(resp. lower) tail version of the Azuma–Hoeffding concentration bound. The Optional Stopping
Theorem also extends in a straightforward manner to these processes:

E[YT ] ≤ E[Y0] (for supermartingales)
E[YT ] ≥ E[Y0] (for submartingales)

Using this, we can derive an upper bound for the hitting time of a martingale on Z satisfying
extremely mild conditions.

Lemma 3.2. Let {Yt}t≥0 be a supermartingale with respect to {Xt}t≥0, and assume {Yt}t≥0 takes
values in {0, . . . , n}. Let T denote the stopping time min{t ≥ 0 : Yt = 0}, and suppose there exists
σ2 > 0 such that for all t < T ,

E
[
(Yt − Yt−1)

2 | X0, . . . , Xt−1

]
≥ σ2

almost surely. Then E[T ] ≤ n2/σ2.

Proof. For parameters α, β to be determined later, consider the random variables Zt
def
= Y 2

t +αYt+
βt. Our goal is to pick α, β so that {Zt}t≥0 is a submartingale w.r.t. {Xt}t≥0. For this, observe
that

E [Zt+1 | X0, . . . , Xt]

= E
[
(Yt + (Yt+1 − Yt))

2
+ α (Yt + (Yt+1 − Yt)) + β(t+ 1) | X0, . . . , Xt

]
= Zt + (2Yt + α) · E [Yt+1 − Yt | X0, . . . , Xt]︸ ︷︷ ︸

≤0 by supermartingale assumption

+ E
[
(Yt+1 − Yt)

2 | X0, . . . , Xt

]
︸ ︷︷ ︸

≥σ2 by assumption

+ β.

To guarantee that this is at least Zt, it suffices to set α = −2n and β = −σ2 by using our assump-
tions on the process. Applying the Optional Stopping Theorem to the submartingale {Zt}t≥0 with
the stopping time T ∧ t, we obtain

max
s∈{0,...,n}

{
s2 − 2ns

}
≤ E[Z0]

≤ E[ZT∧t]

= E[Y 2
T∧t]− 2n · E[YT∧t]− σ2 · E[T ∧ t]

= −σ2 · E[T ∧ t],

where in the final inequality, we used the fact that Y 2
T∧t−2n ·YT∧t ≤ 0 almost surely. Rearranging

and using the fact that the left-hand side is equal to n2 (by setting s = n), we see that E[T ∧
t] ≤ n2/σ2, which is independent of t. Applying the Monotone Convergence Theorem, we have
limt→∞ E[T ∧ t] = E[T ], and so E[T ] ≤ n2/σ2 as well.

3The terminology for supermartingales/submartingales are almost surely confusing to me. Perhaps Lemma 3.1
suggests we should switch “supermartingale/submartingale/martingale” to “concave/convex/linear” martingale?
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3.1 Stochastic Local Search for 2-SAT
We use Lemma 3.2 to show that the following randomized local search algorithm solves 2-SAT4

in polynomial-time: Fix an arbitrary CNF-formula Φ = (V, C) such that every clause contains at
most two literals.

1. Select an arbitrary initial assignment x0 : V 7→ {T,F}.

2. If xt doesn’t satisfy Φ, pick an arbitrary unsatisfied clause C ∈ C. We then pick a uniformly
random literal v ∈ C, and resample its assignment to obtain a new assignment xt+1, i.e.
xt+1(u) = xt(u) for all u ̸= v and xt+1(v) ∼ Unif{T,F}.5

Theorem 3.3 ([Pap91; McD93]). For any satisfiable 2-SAT instance Φ with n variables and m
clauses, the above algorithm finds a satisfying assignment using O(n2)-rounds in expectation. In
particular, the expected running time is O(n2m).

Remark 2. A simple variant of the above algorithm, sometimes referred as the FIX algorithm or
the Moser–Tardos algorithm, works as follows: We initialize to a uniformly random assignment
x0. Then in each step, we pick an arbitrary unsatisfied clause, and resample all of its variables
according to Unif{T,F} independently. As we previously mentioned, in a major breakthrough,
Moser–Tardos [MT10] showed that in the Lovász Local Lemma regime, this algorithm successfully
finds a satisfying assignment using a nearly-linear number of rounds.

Proof. Let x∗ be some arbitrary satisfying assignment, and consider the “potential function” f(x) =
dH(x,x∗). Let Yt

def
= f(xt). If xt isn’t yet a satisfying assignment, then in each unsatisfied clause

C, xt must differ from x∗ in the assignment of at least one of the (at most) two literals in C. Since
we picked a uniformly random such literal and rerandomized its assignment from Unif{T,F}, it
follows that

Pr[Yt − Yt−1 = −1 | x0, . . . ,xt−1] ≥ Pr[Yt − Yt−1 = +1 | x0, . . . ,xt−1]

almost surely. In particular, {Yt}t≥0 is a supermartingale with respect to {xt}t≥0. Moreover,

E
[
(Yt − Yt−1)

2 | x0, . . . ,xt−1

]
≥ σ2

for some constant σ2 > 0 because we are resampling assignments from Unif{T,F}. The claim then
follows by Lemma 3.2.
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A The Measure-Theoretic Definition of Stopping Times
Following the measure-theoretic definition of filtrations and martingales from the Appendix of the
previous lecture, we can formally define stopping times as follows.

Definition 3. Fix a probability space (Ω,F , µ) and a filtration {Fn}n≥0. We say a random variable
(i.e. a F-measurable function) T : Ω → N ∪ {+∞} is a stopping time with respect to {Fn}n≥0 if
the events {T = n} def

= T−1(n) satisfy {T = n} ∈ Fn for all n ∈ N ∪ {+∞}.
4Note that there is also a simple deterministic algorithm for this.
5One can also just “flip” the variable, i.e. set xt+1(v) = ¬xt(v).
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Example 1. Fix a probability space (Ω,F , µ). For a measurable space (Σ,G), let {Xt}t≥0 be a se-
quence of (Σ,G)-valued random variables adapted to a filtration {Ft}t≥0. Then for any measurable
set P ∈ G, the function

T (ω)
def
= inf{t ≥ 0 : Xt(ω) ∈ P}, ∀ω ∈ Ω,

is a stopping time. For instance, imagine Ω is given by the set of all possible trajectories of an
infinite random walk on Z, and each Xt ∈ Z denotes the location of the random walk at time-t.
Then ω is a complete trajectory, and T (ω) denotes the first time step t that the random walk hits
some set P ⊆ Z.
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