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1 Introduction
This course is about stochastic processes, which really is just a fancy name for a collection of
random variables X = {Xι}ι∈I drawn from some high-dimensional probability distribution, where
I is some “index set”. Typically this collection is used to model some real-world phenomenon, e.g.
the evolution of stock prices, or properties of materials. The stochastic process could be handed to
you by a colleague, or you might have to engineer and analyze a process as part of some greater,
overarching endeavor (which a priori might not have any randomness in it!). Our goal will be to
lay the mathematical foundations for how to rigorously study such processes. The ideas we will
develop in this course primarily rest upon three pillars.

Models We will see many examples of stochastic processes. Perhaps the simplest example is just
a sequence of independent coin flips, i.e. each Xi takes value 0 or 1 with equal probability. But
we will go far beyond this, and consider stochastic processes where

• there are possibly complex dependencies between the random variables, and

• the index set I has tangible meaning (e.g. I = N representing the arrow of time, I is the set
of edges/hyperedges of a graph/hypergraph, I is the set of indices of a matrix/tensor, I is a
subclass of Boolean functions, etc.).

As the title of the course suggests, our focus will primarily be on discrete random variables.
Nonetheless, ideas from the continuous world will play an essential role in our journey.

Questions Once we have our models, we can ask all sorts of questions regarding the properties
of our stochastic processes. These questions originate from numerous disparate fields of research.

• Statistics: Given samples of a stochastic process, what properties of the underlying distri-
bution of the process can we infer (e.g. parameter estimation)? Can we distinguish between
two different distributions (i.e. hypotheses) from which the samples could have been gener-
ated? These types of problems broadly fall under the umbrella of high-dimensional statistical
inference.

• Computation: One can ask whether or not various natural computational tasks associated
to the stochastic process are tractable or intractable. For instance, if X is a collection
of indicator random variables describing a graph, we can consider classical problems like
coloring, clique, and Hamiltonian cycle, all of which are well-studied in complexity theory and
theoretical computer science more broadly. As another example, if we are given a description
of the distribution of X , we can try to design efficient algorithms for generating samples from
that distribution to get a sense of what a “typical realization” of X “looks like” on a computer.
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• Physics: Suppose we have a family of stochastic processes Xp parametrized by some p ∈ R.
How do the properties of Xp change as we vary p? As with many large-scale physical systems,
an intriguing phenomenon we will encounter is the presence of a phase transition at some pc,
where the properties of Xp suddenly and dramatically change when we perturb p around pc
by even a tiny amount.

Techniques Finally, we will need to develop tools to answer the questions we ask. We roughly
group them into a few unifying themes.

• The Probabilistic & Moment Methods

• Concentration of Measure

• Comparison Methods (e.g. Coupling)

• Algorithmic Methods

Disclaimer: Both in this course and in real life, almost none of the problems we will encounter
will be nice enough to admit closed-form solutions. Hence, many of our results and techniques will
come in the form of inequalities and asymptotic estimates.

1.1 Basic Tools
In this subsection, we briefly review some of the basic inequalities that we will use repeatedly
throughout this course.

• Markov’s Inequality: For a nonnegative random variable X, we can always upper bound
the upper tail probabilities by

Pr[X ≥ t] ≤ E[X]

t
, ∀t > 0.

To use such an inequality, the only information we need about X is its expectation, which
makes it widely applicable. For instance, if X decomposes as a weighted sum

∑n
i=1 wiXi of

(possibly dependent) smaller random variables, then E[X] decomposes as
∑n

i=1 wi · E[Xi],
a fact known as linearity of expectation. Note that this holds regardless of how correlated
X1, . . . , Xn are!

• Chebyshev’s Inequality: If we additionally have control over the variance of our random
variable, then we get stronger bounds on the probability that X deviates from its expectation:
For any real-valued random variable X (not necessarily nonnegative),

Pr [|X − E[X]| ≥ t] ≤ Var(X)

t2
, ∀t > 0.

• Union Bound: If E1, . . . , En is a collection of events, then

Pr

[
n⋃

i=1

Ei

]
≤

n∑
i=1

Pr[Ei],

with equality if and only if E1, . . . , En are mutually exclusive, i.e. pairwise disjoint.1

2 Introduction to Percolation
We begin by discussing one of the most fundamental models of a random network, and some of its
basic properties.

Definition 1 (Bond Percolation). For a graph G = (V,E) and p ∈ [0, 1], (bond) percolation on
G yields a random subgraph H = (V, F ) with F ⊆ E, where each edge e ∈ E is included in F
independently with probability p.

1Technically, you can allow nonempty intersections, but they must have zero measure.
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We isolate a particular special case, namely the case where G is the complete graph and E =
(
V
2

)
.

This is an extremely famous and well-studied model of random graphs.

Definition 2 (Erdös–Rényi Random Graph). For n ∈ N and p ∈ [0, 1], the Erdös–Rényi random
graph G(n, p) is a random undirected simple graph on vertex set V with |V | = n where each pair
of distinct vertices {u, v} ∈

(
V
2

)
is included in the edge set E independently with probability p. We

sometimes abuse notation and write G ∼ G(n, p) for G drawn from the Erdös–Rényi distribution.

Fact 2.1. For any n ∈ N and p ∈ [0, 1], the expected number of edges in G(n, p) is p ·
(
n
2

)
.

Hence, if p is a constant independent of n, we expect to see a very dense graph when sampling
G ∼ G(n, p). We will also be interested in sparser situations where p = pn is allowed to depend
on n. For example, we may take pn = c

nα , pn = c lnn
n , or pn = c

n for fixed constants c > 0 and
α ∈ [0, 1]. What will be important is how pn scales as n grows. In the remainder of this lecture,
we will drop the subscript, as everything will be with respect to G ∼ G(n, p). All asymptotics will
be in the large n limit.

2.1 Local Structures: Triangles in Erdös–Rényi
Definition 3 (Triangle). For a graph G, a triangle is a triple of distinct vertices {u, v, w} ∈

(
V
3

)
such that every pair is connected by an edge in G. We let TG denote the number of triangles in G.

Lemma 2.2. For any n ∈ N and p ∈ [0, 1],

E [TG] = p3 ·
(
n

3

)
= (1 + o(1)) · p

3n3

6
.

Proof. For each triple {u, v, w} ∈
(
V
3

)
, the probability that it forms a triangle in G ∼ G(n, p) is

precisely p3. The claim then follows by linearity of expectation.

Proposition 2.3. Let 0 < p ≤ 1 be an arbitrarily fixed constant independent of n. Then for every
ϵ > 0 (again independent of n),

Pr

[∣∣∣∣ TG

p3n3/6
− 1

∣∣∣∣ > ϵ

]
→ 0 as n → ∞.

In other words, TG(n,p)

p3n3/6 converges to 1 in probability, sometimes written as TG(n,p)

p3n3/6

P→ 1, as n → ∞.

Proof. We use Chebyshev’s Inequality to bound the probability that TG deviates from its expec-
tation. Let Iuvw denote the indicator random variable for whether or not the triple of vertices
{u, v, w} forms a triangle in the graph. Our goal is to estimate the variance of TG and then compare
it to its squared expectation. Expanding using the linearity of expectation, we have

E
[
T 2
G

]
=

 ∑
{u,v,w},{x,y,z}∈(V3)

E [IuvwIxyz]

 .

Each term is equal to the probability that some subset of edges are present. These probabilities
depend on the number of overlapping vertices between the triples {u, v, w} and {x, y, z}. We have
four cases.

1. If {u, v, w} = {x, y, z}, then E[IuvwIxyz] = p3. There are
(
n
3

)
= O(n3) such terms.

2. If {u, v, w}, {x, y, z} share exactly two vertices, then E[IuvwIxyz] = p5 corresponding to the
fact that the structure IuvwIxyz captures is a complete graph on 4 vertices with a single edge
removed. There are

(
n
4

)
·
(
4
2

)
= O(n4) such terms.

3. If {u, v, w}, {x, y, z} share exactly one vertex, then E[IuvwIxyz] = p6 corresponding to the
fact that the structure IuvwIxyz captures is the graph consisting of two triangles joined at a
single vertex. There are

(
n
3

)
· 3 ·

(
n−3
2

)
= O(n5) such terms.

4. If {u, v, w}, {x, y, z} do not share any vertices, then E[IuvwIxyz] = E[Iuvw] · E[Ixyz] = p6.
There are

(
n
3

)
·
(
n−3
3

)
such terms.
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Putting together these calculations, we get

Var (TG) = E[T 2
G]− E[TG]

2 ≤ Op(n
5),

where the constant depends on p. It follows that

Pr

[∣∣∣∣ TG

p3n3/6
− 1

∣∣∣∣ > ϵ

]
= Pr

[∣∣∣∣TG − p3n3

6

∣∣∣∣ > ϵ · p
3n3

6

]
≤ 6

ϵ2
· Var (TG)

p6n6
(Chebyshev’s Inequality)

≤ Oϵ,p(1/n),

which decays to 0 as n → ∞, for every fixed ϵ > 0 and p ∈ (0, 1].

Remark 1. By being more careful with the calculations, one can show that the correct order for the
variance of TG is actually Op(n

4). This can actually be shown using some of the general-purpose
tools we’ll discuss in a future lecture.

2.2 Global Structure: The Erdös–Rényi Connectivity Phase Transition
Theorem 2.4. For pn = c lnn

n where c ∈ R≥0 is a constant, we have

lim
n→∞

Pr [G(n, pn) is connected] =

{
1, if c > 1

0, if c < 1.

Remark 2. At c = 1, one can show that limn→∞ Pr [G(n, pn) is connected] equals some explicit
constant lying strictly between 0 and 1.

Connectivity is a global property of a graph. The usual definition states that for every pair of
vertices u, v ∈ V , there is a path from u to v using the edges of the graph. The “dual” viewpoint
is that for every subset of vertices ∅ ⊊ S ⊊ V , there exists an edge {u, v} in the graph such that
u ∈ S and v ∈ S

def
= V \ S; in other words, there is an edge crossing every cut in the graph. This

is an equivalent definition of connectivity which is more amenable to calculations. In particular,

Pr [G(n, pn) is disconnected] = Pr
[
∃∅ ⊊ S ⊊ V s.t. E

(
S, S

)
= ∅

]
and

Pr
[
E
(
S, S

)
= ∅

]
= (1− pn)

|S|·|V \S|, ∀∅ ⊊ S ⊊ V,

where we write E
(
S, S

)
for the subset of edges of G crossing the cut

(
S, S

)
. This already suggests

a way to upper bound the probability that G is disconnected. In particular, by combining the
preceding two displays with the Union Bound (and the fact that S and S induce the same cut),
we have

Pr [G(n, pn) is disconnected] ≤
⌊n/2⌋∑
k=1

(
n

k

)
(1− pn)

k·(n−k). (1)

We will show that if c > 1, then the right-hand side converges to 0 as n → ∞. If c < 1, we will see
that the right-hand side actually grows with n due to the contribution from the k = 1 term in the
summation, which signals the presence of isolated vertices. These certainly certify disconnectedness
of the graph, and so the c < 1 case will proceed by lower bounding the probability of those events.

2.3 Heuristic Reasoning
Before we dive into calculations, let’s try to get a heuristic understanding of the right-hand side
of Eq. (1). Perhaps the most unwieldy component is the binomial coefficient

(
n
k

)
. However, an

extremely useful approximation is(
n

k

)
“ ≈ ” exp

(
He

(
k

n

)
· n

)
where He(p)

def
= −p ln(p)− (1− p) ln(1− p).
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Here He(p) is the entropy of Ber(p) measured in base e. One can formalize this approximation
using Stirling’s approximation for the factorial (see below), but one must be careful about the size
of the errors in this approximation, even when k ≪ n. Nonetheless, if our goal is to merely get a
sense of what we’re dealing with, we can treat it as an equality.

Using this approximation and 1−pn ≈ e−pn (which is valid for small pn; note that 1−x ≤ e−x

for all x), we can approximate the right-hand side of Eq. (1) by

“ ≲ ”

⌊n/2⌋∑
k=1

exp

(
n ·

(
He(k/n)− c ln(n) · k

n
·
(
1− k

n

)))
.

In order for this to decay to 0 as n → ∞, we certainly need each term to decay to 0, and in
particular, we need

He(k/n) < M · k
n
·
(
1− k

n

)
, ∀k = 1, . . . , ⌊n/2⌋ ,

where M = c lnn. Now if we compare He(p) with the function f(p) = Mp(1− p) (e.g. by plotting
them), we find that f(p) upper bounds He(p) precisely for p lying in a symmetric interval around
1/2 as soon as M ≥ e. The crossover point for when He(p) ≥ Mp(1− p) occurs at p∗ and 1− p∗,
where p∗ ≈ exp(1 − M) for M large. If M = c lnn, this yields p∗ ≍ 1

nc . In order for this to be
smaller than k

n for every k = 1, . . . , ⌊n/2⌋ in the large n limit, we certainly need c > 1. On the
other hand, as soon as c < 1, the k = 1 term becomes macroscopic and dominates the sum. This
roughly explains the transition at c = 1 and why the scaling is pn ≍ lnn

n .

2.4 Proof of Theorem 2.4: The Case c > 1

Our goal is to show that the right-hand side of Eq. (1) decays to 0 as n → ∞ when c > 1. Towards
this, recall that one way to state Stirling’s approximation is,

lim
k→∞

k!

kk+1/2e−k
= 1,

which in particular implies that ln(k!) ≥
(
k + 1

2

)
ln k − k − C for some universal constant C > 0.

Combining this with the standard inequalities
(
n
k

)
≤ nk

k! and 1 − x ≤ e−x, we obtain the upper
bound

eC ·
⌊n/2⌋∑
k=1

exp

(
k lnn− k(n− k)pn −

(
k +

1

2

)
ln k + k

)
. (2)

To show that this is o(1), we separate the terms in the sum into two regimes. Fix a small constant
ϵ > 0 such that (1− ϵ)c > 1 (which exists since c > 1).

• Suppose 1 ≤ k ≤ ϵn. In this case, note that exp
(
−
(
k + 1

2

)
ln k + k

)
≤ O(1) (in fact, the

exponent is decreasing and becomes negative already for k ≥ 3) so we can ignore this term.
Since (1− ϵ)c > 1, we have that

k lnn− k(n− k)pn < k lnn− k(1− ϵ)n · c lnn
n

= −((1− ϵ)c− 1)k lnn.

Hence, if we set ĉ = (1− ϵ)c− 1 > 0, then the first ϵn terms of Eq. (2) are upper bounded by

O(1) ·
ϵn∑
k=1

n−ĉ·k ≤ O
(
n−ĉ

)
,

which clearly decays to 0 as n → ∞.

• Suppose ϵn ≤ k ≤ ⌊n/2⌋. Then observe that

k lnn−
(
k +

1

2

)
ln k + k ≤ k lnn− k ln(ϵn) + k = k (1 + ln(1/ϵ))
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while k(n−k)pn ≥ 1
2ck lnn. It follows that the remaining terms of Eq. (2) are upper bounded

by

⌊n/2⌋∑
k=ϵn

( e

ϵ · nc/2

)k

≤ O
(
n−c/2

)
,

which also decays to 0 as n → ∞.

2.5 Proof of Theorem 2.4: The Case c < 1

Observe that

Pr [G(n, pn) is disconnected] ≥ Pr [∃ isolated vertex] .

Hence, it suffices to show that the right-hand side converges to 1 when c < 1. Towards this, let Iv
be the indicator random variable for whether or not the vertex v is isolated, and let I =

∑
v∈V Iv

be the total number of isolated vertices. Observe that the expectation of I (which is the k = 1
term in the right-hand side of Eq. (1)) is given by

E [I] = n(1− pn)
n−1

= n · exp
(
(n− 1) ln

(
1− c lnn

n

))
= n · exp (−c lnn− o(lnn)) (Using ln(1− x) = −x− o(x) for small x)

≥ n1−c−o(1).

This lower bound on the expectation by itself is not enough to obtain a 1−o(1) lower bound on the
probability that there exists an isolated vertex. To complete the proof, we compute the variance
of I and compare it with E [I]2. We have

E
[
I2

]
=

∑
v∈V

E[Iv] +
∑
u ̸=v

E [IuIv] (Expanding and using I2
v = Iv)

= n(1− pn)
n−1 + n(n− 1)(1− pn)

2(n−2)+1. (Direct Calculation)

It follows that

Pr [I = 0] ≤ Pr

[
I ≤ 1

2
E[I]

]
≤ Var (I)

(E[I]/2)2
(Chebyshev’s Inequality)

= 4 ·
(

1

n(1− pn)n−1
+

n− 1

n
· 1

1− pn
− 1

)
≤ 4

n1−c−o(1)
+

4pn
1− pn

(Using E[I] ≥ n1−c−o(1))

≤ o(1).

The claim is immediate.
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