
6.S891 Problem Set 1

Due: September 28, 2023 (11:59 PM EST)

Please turn in a PDF with solutions typed in LATEX. You may collaborate on this problem set,
but please attempt the problems yourself first. It goes without saying, please do not try to look
up solutions online. Feel free to use Wikipedia, etc. for material pertaining to reasonable course
prerequisites (e.g. basic probability, linear algebra, etc.) If you find a bug in a problem, please let
me know.

Exercise 1 (Dobrushin Uniqueness and Ising Models). Let µ be a probability measure on [q]n,
where recall that for a positive integer q ∈ N, [q] def= {1, . . . , q}. For a subset S ⊆ [n] and a (partial)
configuration τ : S → [q], we let µτ denote the induced conditional measure, i.e.

µτ (σ) ∝

{
µ(σ), if σ(i) = τ(i),∀i ∈ S

0, otherwise.

For i ∈ [n] and c ∈ [q], we also use the notation i ← c for the case S = {i} and τ(i) = c. For all
j ∈ [n], we write µj for the marginal distribution induced on j, i.e.

µj(c) =
∑

σ∈[q]n:σ(j)=c

µ(σ), ∀c ∈ [q].

(a) Define the n× n Dobrushin influence matrix R ∈ Rn×n as follows:

R(i→ j) = max
τ :[n]\{i,j}→[q]

max
b,c∈[q]

dTV

(
µτ,i←b
j , µτ,i←c

j

)
, ∀i ̸= j.

(We set R(i→ i) = 0 for the diagonal entries.) Prove that if

∥R∥ℓ∞→ℓ∞

def
= max

i∈[n]

n∑
j=1

|R(i→ j)| = 1− δ,

for some constant 0 < δ < 1, then Glauber dynamics with stationary measure µ has mixing
time Tmix(ϵ) ≤ O((n/δ) log(n/ϵ)).

(b) For a symmetric n×n matrix J ∈ Rn×n and β ≥ 0, define a probability measure µ on {±1}n
by

µ(σ) ∝ exp

(
β

2
σ⊤Jσ

)
.

This is an Ising model with interaction matrix J ; here β ≥ 0 is the inverse temperature, and
is treated as a constant independent of n. Prove that for all i ̸= j, R(i→ j) ≤ |tanh(βJij)|.

(c) Consider the case where J = 1
n11

⊤; this is the Curie–Weiss model.

• Prove that when β < 1, Glauber dynamics mixes in O(n log n) steps.

• Prove that when β > 1, Glauber dynamics needs exp(Ω(n)) steps to mix.
(If it makes things convenient, you may use the approximation

(
n
pn

)
≈ exp(n · He(p))

for all p ∈ [0, 1] as if it is an equality, where He(p)
def
= −p ln(p) − (1 − p) ln(1 − p) is a

slight modification of the standard binary entropy function.)
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Exercise 2 (Correlation Inequalities via Markov Chains). Let µ, ν be two probability measures
over 2[n], endowed with the containment order. We say ν stochastically dominates µ if there exists
a coupling ξ of µ, ν such that S ⊆ T holds with probability 1 for (S, T ) ∼ ξ. Such a coupling is
called monotone.

(a) Now let Pµ, Pν be Markov chains with stationary measures µ, ν, respectively. We say Pν

stochastically dominates Pµ if for every S ⊆ T , the transition measure Pν(T → ·) stochas-
tically dominates Pµ(S → ·). In other words, there is a Markovian coupling (Xt, Yt)

∞
t=0 of

Pµ, Pν such that for all initial states X0, Y0 ∈ 2[n], X0 ⊆ Y0 implies Xt ⊆ Yt for all t with
probability 1.

Prove that if Pµ, Pν have µ, ν as their unique stationary measures, and Pν stochastically
dominates Pµ, then ν stochastically dominates µ.

(b) Assume µ, ν are both strictly positive. Suppose for all A,B ∈ 2[n], we have the inequality

ν(A ∪B) · µ(A ∩B) ≥ µ(A) · ν(B).

Prove that ν stochastically dominates µ.

(c) Prove that if ν stochastically dominates µ, then for every increasing function f : 2[n] → R,
we have the inequality Eµ[f ] ≤ Eν [f ].1

(d) Suppose µ(S) ∝ exp(F (S)) where F : 2[n] → R is a supermodular set function, i.e.

F (S ∪ T ) + F (S ∩ T ) ≥ F (S) + F (T ), ∀S, T ∈ 2[n].

In other words, µ is a log-supermodular point process. Prove that µ is positively correlated
in the following sense:

Pr
S∼µ

[i, j ∈ S] ≥ Pr
S∼µ

[i ∈ S] · Pr
S∼µ

[j ∈ S], ∀i, j ∈ [n].

Exercise 3 (Concentration of Trajectories). The goal of this exercise is to prove the following
theorem: Let P be an ergodic Markov chain on a finite state space Ω which is reversible w.r.t.
a probability measure µ. Let (Xt)

∞
t≥0 be a trajectory of P with the initial state X0 drawn from

the stationary distribution µ. Then for every nonnegative integer T ∈ N, every ϵ > 0, and every
1-bounded function f : Ω→ [0, 1], we have the concentration inequality

Pr

[∣∣∣∣∣ 1T
T−1∑
t=0

f(Xt)− Eµ[f ]

∣∣∣∣∣ ≥ λ
∗
2 (P) + ϵ

]
≤ 2 exp

(
−Cϵ2T

)
,

for some universal constant C > 0, where λ ∗2 (P) = maxi>1 {|λi(P)|} gives the second largest
eigenvalue of P in absolute value.

(a) Like most proofs of Chernoff-like concentration inequalities, the crucial step is obtaining a
good bound on the moment generating function. Let s ≥ 0 be a parameter to be determined
later. Establish the following bound:

E

[
exp

(
s

T−1∑
t=0

f(Xt)

)]
≤ ∥Mf∥T−1op · Eµ

[
esf
]
,

where Mf ∈ RΩ×Ω is the symmetric matrix given by

Mf = diag
(
esf/2

)
· diag (µ)1/2 Pdiag (µ)

−1/2 · diag
(
esf/2

)
,

and ∥·∥op denotes the usual operator norm w.r.t. the standard Euclidean inner product.

(b) Complete the proof of the theorem.

(Hint: Aim for the upper bound ∥Mf∥op ≤ λ∗2 (P) · es + (1− λ ∗2 (P)) ·Eµ

[
esf
]
. It may also be

helpful to use the inequality 1− e−x ≥ x− 1
2x

2, which holds for all x ≥ 0.)
1This is the original definition of stochastic domination. However, Strassen’s Theorem says that these are

equivalent.
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Remark 1. Better results are known. In particular, it is known there is a universal constant C > 0
such that for all ϵ > 0,

Pr

[∣∣∣∣∣ 1T
T−1∑
t=0

f(Xt)− Eµ[f ]

∣∣∣∣∣ ≥ ϵ

]
≤ 2 exp

(
−C(1− λ

∗
2 (P)) · ϵ2T

)
.

This stronger bound greatly generalizes the classical Chernoff bound, where P is the trivial Markov
chain 1µ⊤. These types of results are really useful in practice due to the following reason: The
usual Chernoff bound assumes independence, so naïvely, you would run O

(
1

ϵ2·Eµ[f ]
log(1/δ)

)
in-

dependent copies of the chain until mixing to be able to do Monte Carlo estimation. The running
time cost becomes this factor multiplied by the mixing time (unless you run the chains in parallel).
This result allows you instead to run a single copy of the chain until mixing, and take the next
O
(

1
(1−λ∗

2 (P))·ϵ2·Eµ[f ]
log(1/δ)

)
states in the trajectory as your samples. You pay an extra multi-

plicative factor of 1
1−λ∗

2 (P) in the number of samples, but the combined running time is additive
with the mixing time, not multiplicative.

There are loads of additional applications to derandomization as well, where P is typically the
simple random walk on a d-regular expander graph with d = O(1).
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