
6.S891 Lecture 9: Monomer-Dimer Systems and the
Heilmann–Lieb Theorem

Kuikui Liu

October 5, 2023

In this lecture, we see another method for establishing zero-free regions based on self-avoiding
walks, similar to the computation tree gadget used in the correlation decay algorithm. We’ll use
this to prove the Heilmann–Lieb Theorem on real-rootedness of the matching polynomial. We’ll
then apply Barvinok’s polynomial interpolation algorithm to obtain an FPTAS for matchings. In
the setting of matchings, we’ll further illustrate how one can improve the algorithm from quasipoly-
nomial running time to polynomial, assuming the graph has bounded maximum degree. The main
algorithmic result of this lecture is the following.

Theorem 0.1 (Patel–Regts; [PR17]). There exists a deterministic algorithm such that given a
graph G = (V,E) of maximum degree ∆ and an error parameter ϵ > 0, the algorithm outputs a
(1±ϵ)-multiplicative approximation to the total number of matchings in G in time (n/ϵ)C for some
constant C = C(∆) depending only on ∆.

1 Zero-Freeness for Matchings
Recall that for a graph G = (V,E), a matching M ⊆ E is a subset of edges such that no vertex
is incident to more than one edge in M . For a parameter λ ≥ 0, we define the monomer-dimer
model as the following distribution over matchings:

µ(M) ∝ λ|M |, ∀ matchings M ⊆ E.

The associated partition function

MG(λ) =
∑

M⊆E matching

λ|M | =

⌊n/2⌋∑
k=0

mkλ
k,

is the matching polynomial of G, where mk = mk(G) gives the number of size-k matchings in G.
We prove the following theorem.

Theorem 1.1 (Heilmann–Lieb; [HL72]). For every graph G = (V,E), the roots of MG all lie on
the negative real axis. Furthermore, if G has maximum degree ∆, then every such root z satisfies
z ≤ − 1

4(∆−1) .

Remark 1. Note that the monomer-dimer model on G can be viewed as the hardcore model on
the line graph L(G) of G, where each vertex of L(G) corresponds to an edge in G, and two such
vertices in L(G) are directly connected if their corresponding edges in G share a common vertex. In
contrast, for the hardcore model on arbitrary graphs of maximum degree ∆, the partition function
is zero-free only in some strip around the interval [0, λc(∆)). Hence, Theorem 1.1 says that the
class of line graphs have much better behaved independence polynomials.

We will prove Theorem 1.1 in two steps, similar to the proof of correlation decay for the hardcore
model. We will (inductively) construct a tree T , with the same maximum degree as G, such that
MG divides MT as polynomials. This in particular says that the zeros of MG are a subset of the
zeros of MT . We will then directly analyze the zeros of MT for all bounded-degree trees.

1

1.1 Reduction to Trees: Return of the Self-Avoiding Walks
Fix a vertex r ∈ G, and define the tree of self-avoiding walks TSAW(G, r) as follows:

• Each vertex of TSAW(G, r) corresponds to a walk r = u0 → · · · → uk = v in G started at
r, subject to the constraint that no vertex is visited more than once. Such walks are called
self-avoiding.

• Two such self-avoiding walks are adjacent in TSAW(G, r) if one walk extends the other.

Note that the root vertex of TSAW(G, r) corresponds to the trivial walk {r} which hasn’t moved
anywhere. Furthermore, each vertex of TSAW(G, r) can be identified with a vertex in G correspond-
ing to the last visited vertex. Finally, if the maximum degree of G is ∆, then the maximum degree
of TSAW(G, r) is also (at most) ∆.

We prove the following divisibility result, which is well-known in algebraic combinatorics. It
immediately implies that the set of roots of MG is contained in the set of roots of MT for
T = TSAW(G, r).

Theorem 1.2 (Godsil–Gutman; see e.g. [God93]). For every graph G = (V,E) and every vertex
r ∈ V , there exists a polynomial q(λ) such that MT (λ) = MG(λ) · q(λ) for T = TSAW(G, r).

The first step in the reduction is to decompose the matching polynomial MG in a manner
similar to the tree recursions we used in the context of correlation decay. By Remark 1, we could
view MG as the independence polynomial of the line graph, and then leverage the tree recursion
for the hardcore model. However, deducing real-rootedness seems difficult, since at some point we
need to take advantage of the special structure of matchings. We derive a different decomposition
instead.

Lemma 1.3 (Recursion for Matching Polynomial). For every graph G = (V,E) and every vertex
r ∈ V ,

MG(λ) = MG−r(λ) + λ
∑
v∼r

MG−r−v(λ).

Proof. We can partition the collection of matchings in G into 1 + degG(r) groups:

• One group consists of all matchings which do not contain any edge incident to r.

• For each v ∼ r, we have a group consisting of all matchings containing the edge {r, v}.

The first group contributes MG−r(λ), while each of the other groups contributes λ · MG−r−v(λ).

Proof of Theorem 1.2. We use Lemma 1.3 to inductively prove the following identity:

MG(λ)

MG−r(λ)
=

MT (λ)

MT−r(λ)
. (1)

Note if we interpret both sides probabilistically, this identity is exactly saying the marginal probabil-
ity of r being saturated by an edge in a random matching is the same in both G and T = TSAW(G, r).
This is precisely the same kind of relationship we needed from the computation tree when we stud-
ied correlation decay and the hardcore model. Here, at least for the moment, we are just using
the tree T as a mode of analysis, rather than as an algorithm directly. This is a fairly generic
technique for establishing zero-free regions, assuming you can control the zeros in the special case
of trees.

Note that the base case of Eq. (1), where G is a tree (e.g. two vertices connected by a single
edge), is immediate, since in that case G = TSAW(G, r). For the inductive step, observe that

MG(λ)

MG−r(λ)
= 1 + λ

∑
v∼r

M(G−r)−v(λ)

MG−r(λ)
(Lemma 1.3)

= 1 + λ
∑
v∼r

MTSAW(G−r,v)−v(λ)

MTSAW(G−r,v)(λ)
. (Inductive Hypothesis)

2

Here is the crucial observation: If we delete r from TSAW(G, r), we obtain degG(r) many disjoint
subtrees, each rooted at a neighbor v ∼ r. Furthermore, the subtree corresponding to v is precisely
TSAW(G − r, v), since for any self-avoiding walk in G − r started at v, we can append r at the
beginning to produce a self-avoiding walk in G started at r which moves to v in the first step. It
follows that for every v ∼ r,

MTSAW(G−r,v)−v(λ)

MTSAW(G−r,v)(λ)
=

MTSAW(G,r)−r−v(λ)

MTSAW(G,r)−r(λ)
.

There is a slight subtlety here, in that TSAW(G, r) − r also has subtrees corresponding to other
neighbors u ∼ r besides v. However, since TSAW(G, r)− r is a disjoint union of trees which are not
connected to one another, its matching polynomial factorizes as a product of matching polynomials
of its components. In particular, the terms coming from the other neighbors u ̸= v of r cancel in
both the numerator and denominator.

Once we have this, applying Lemma 1.3 again, we obtain

1 + λ
∑
v∼r

MTSAW(G−r,v)−v(λ)

MTSAW(G−r,v)(λ)
= 1 + λ

∑
v∼r

MTSAW(G,r)−r−v(λ)

MTSAW(G,r)−r(λ)

=
MT (λ)

MT−r(λ)
.

This completes the proof of Eq. (1). Observe that Eq. (1) implies

MT (λ) = MG(λ) ·
MT−r(λ)

MG−r(λ)
.

We can use this with an inductive argument to prove divisibility. In particular, since MG−r(λ)

divides MT−r(λ) by induction, the ratio MT−r(λ)
MG−r(λ)

is itself a polynomial, and so it follows that
MG(λ) divides MT (λ).

1.2 The Matching Polynomial on Trees
Theorem 1.2 allowed us to reduce our task to studying the matching polynomial on trees. For this
analysis, it will be convenient to perform a slight change of variables. Define

M̃G(z)
def
=

⌊n/2⌋∑
k=0

(−1)kmkz
n−2k = znMG(−1/z2).

For trees, we have the following relationship between this (transformed) matching polynomial and
the characteristic polynomial of the adjacency matrix.

Lemma 1.4. For every tree T , we have M̃T (z) = det(zI−AT). In particular, the roots of M̃T (z)
are precisely the eigenvalues of AT .

Proof. We expand out the determinant as

det(zI −AT) =
∑

σ:V→V

(−1)sign(σ)
∏
v∈V

(zI −A)v,σ(v)

=

n∑
k=0

(−1)kzn−k
∑

S∈(Vk)

det(AS,S),

where AS,S denotes the S ×S principal submatrix of A. The final step follows from first summing
over the possible sets of fixed points S ⊆ V , and then summing over the possible permutations
such that S = {v : σ(v) = v}. We can compactly write this inner summation as det(AS,S) because
A has zero diagonal.

To prove the claim, it suffices to show that for every k = 0, . . . , n and every S ∈
(
V
k

)
, the

number (−1)k/2 det(AS,S) counts the number of perfect matchings in the subgraph of T induced
by S. If we can show this, then (−1)kmk =

∑
S∈(V

2k)
det(AS,S) and M̃T (z) = det(zI−AT) follows

by comparing coefficients.

3

For simplicity, we’ll just prove that (−1)n/2 det(A) gives the number of perfect matchings in T .
The argument for the induced subgraphs is nearly identical. We have

det(A) =
∑

σ:V→V

(−1)sign(σ)
∏
v∈V

Av,σ(v).

All permutations σ : V → V with nonzero contribution must satisfy {v, σ(v)} ∈ E for all v ∈ V .
All permutations also admit a decomposition into a disjoint union of cycles, each formed by starting
with some v ∈ V and collecting the successive iterates {v, σ(v), σ(σ(v)), . . . }. Since T does not
have any (nontrivial) cycles, we only get a nonzero contribution from σ whose cycle decomposition
consists of inversions, i.e. σ(σ(v)) = v for all v ∈ V . Clearly, such permutations are in one-to-one
correspondence with perfect matchings on T (i.e. M = {(v, σ(v)) : v ∈ V } ⊆ E and vice versa)
Furthermore, since sign(σ) counts the number of inversions in σ, we get (−1)sign(σ) = (−1)n/2 for
such permutations.

Lemma 1.5. For every tree T of maximum degree ∆, the eigenvalues of AT are at most 2
√
∆− 1.

Remark 2. Note that for any graph G of maximum degree ∆, we always have the trivial bound of
λmax (AG) ≤ ∆ by virtue of the maximum absolute row sum. While this trivial bound is attained
by ∆-regular graphs, Lemma 1.5 says that for trees, we get a square root improvement. Note that
since T is bipartite, the eigenvalues of AT are symmetric about 0, and so Lemma 1.5 also says that
the eigenvalues of AT are fully contained in the interval

[
−2

√
∆− 1, 2

√
∆− 1

]
.

Proof. We use the trace moment method. In particular, since the trace is the sum of eigenvalues,
and the eigenvalues of Ak

T are the eigenvalues of AT raised to the kth power, it is immediate that1

λmax (AT)
2k ≤ Tr

(
A2k

T

)
, ∀k ∈ N.

We claim that
(
A2k

T

)
(r, r) ≤ 22k(∆− 1)k for every r ∈ V and k ∈ N via combinatorial argument.

If we can show this, then λmax (AT)
2k ≤ n · 22k(∆− 1)k for all k ∈ N, and so the claim follows by

taking 2kth roots and sending k → ∞.
Recall that

(
A2k

T

)
(r, r) counts the number of walks in T starting and ending at r. We classify

each step of each walk as either up or down, depending on if the step increases or decreases the
distance from r. The crucial observation is that since T is a tree, the number of up steps must
equal the number of down steps in order to return to r; in particular, they must both be equal
to k. Hence, there are at most

(
2k
k

)
ways of choosing which steps of the length-2k walk are up or

down. Furthermore, each down step has at most ∆ − 1 choices for the destination vertex, while
each up step only has one choice. It follows that there are at most

(
2k
k

)
(∆ − 1)k ≤ 22k(∆ − 1)k

such walks, as desired.

With all of these ingredients in hand, we complete the proof of the Heilmann–Lieb Theorem.

Proof of Theorem 1.1. Since MG divides MT by Theorem 1.2, where T = TSAW(G, r) for an
arbitrarily chosen vertex r ∈ G, all roots of MG are roots of MT as well. Furthermore, if G has
maximum degree ∆, then so does T . Hence, it suffices to prove the claims for MT . By Lemma 1.4,
M̃T (z) is the characteristic polynomial of a symmetric matrix, namely AT , so its roots are real.
This immediately implies the roots of MT are real. Furthermore, since MT has nonnegative
coefficients and m0 = 1 (so that MT (0) ̸= 0), its roots must be strictly negative. Finally, if T has
maximum degree ∆, then the roots of M̃T (z) are at most 2

√
∆− 1 by Lemma 1.5. It follows that

the roots of MT are at at least 1
4(∆−1) in absolute value.

2 Improved Running Time for Polynomial Interpolation
In this section, we prove Theorem 0.1. We prove the following more general result.

Theorem 2.1 (Patel–Regts; [PR17]). There exists a deterministic algorithm such that given a
graph G = (V,E) of maximum degree ∆, a fugacity λ ≥ 0, and an error parameter ϵ > 0,
the algorithm outputs a (1 ± ϵ)-multiplicative approximation to MG(λ) in time (n/ϵ)C for some
constant C = C(λ,∆) depending only on λ,∆.

1In fact, we have λmax (AT) = ∥AT ∥op = limk→∞ Tr
(
A2k

T

)1/2k.

4

For simplicity, we begin by explaining the idea when λ < 1
4(∆−1) , since in this setting, we have

a zero-free disk around the origin and we can directly apply Barvinok’s polynomial interpolation
algorithm. For the general case, we’ll need the extension to strips, along with a small additional
trick.

Recall that to implement the vanilla version of Barvinok’s algorithm when we have a zero-
free disk around the origin, we need to compute the numbers {f (k)(0)}mk=0 for m ≤ O(log(n/ϵ)),
where f(λ) = logMG(λ) and f (k)(λ) = dk

dλk f(λ) denotes the kth-order derivative. Furthermore, if
ζ1, . . . , ζ⌊n/2⌋ are the roots of MG, then

f (k)(0)

k!
= −1

k

⌊n/2⌋∑
i=1

ζ−k
i , ∀k ∈ N.

In the previous lecture, we computed the f (k)(0) by first computing the M(k)
G (0) = k! · mk and

then solving an appropriate linear system. Now, we can of course compute each mk in nO(k)-time
by brute force, but this will lead to quasipolynomial running time once k is of logarithmic order.

The next insight here is to compute the inverse power sums
∑⌊n/2⌋

i=1 |ζi|−k of (the absolute
values of) the roots by interpreting them combinatorially, again using walks. Since the graph has
bounded maximum degree, in the end, this will bring the cost of estimating f (k)(0) down to ∆O(k).

Proposition 2.2 (Moments of Roots). For every r ∈ V , let T (r) = TSAW(G, r). Then

⌊n/2⌋∑
i=1

|ζi|−k
=

1

2

∑
r∈V

(
A2k

T (r)

)
(r, r).

Proof of Theorem 2.1 (Special Case). We illustrate the main ideas in the special case |λ| < 1
4(∆−1) ;

the general case is treated in Section 2.2. We use Barvinok’s polynomial interpolation algo-
rithm. Since MG is zero-free in a disk of radius R = 1

4(∆−1) around the origin, we can estimate
f(λ) = logMG(λ) to ϵ-additive error for any λ ∈ C with |λ| < R using its degree-m Taylor series
with m ≤ Oλ,∆(log(n/ϵ)). All that remains is to exactly compute the coefficients of this Taylor
approximation, i.e. compute each

∑⌊n/2⌋
i=1 |ζi|−k for all 0 ≤ k ≤ m.

By Proposition 2.2,
∑⌊n/2⌋

i=1 |ζi|−k
= 1

2

∑
r∈V

(
A2k

T (r)

)
(r, r) for all k. Since T (r) has max-

imum degree ∆, the number
(
A2k

T (r)

)
(r, r) can be computed exactly in time ∆O(k) via brute

force enumeration; again, this is because this quantity exactly counts the number of length-2k
walks in T (r) which start and end at the root r. This gives us an n∆O(k)-time algorithm for
exactly computing

∑⌊n/2⌋
i=1 |ζi|−k, for all k. Hence, the total running time of the algorithm is

∆O(m) = ∆Oλ(log(n/ϵ)) = (n/ϵ)C for a constant C = C(λ,∆) depending on ∆ and how far λ is
from the boundary of the radius- 1

4(∆−1) disk.

2.1 On Moments of Roots of MG: Proof of Proposition 2.2

To see this connection between moments of roots and walks, it is again easier to work with M̃G

instead of MG, in light of Lemma 1.4. By Theorem 1.1 (and MG(0) = m0 = 1), we may express

MG(λ) =

⌊n/2⌋∏
i=1

(
1− λ

ζi

)
,

and so

M̃G(z) = znMG(−1/z2) = zn−2·⌊n/2⌋ ·
⌊n/2⌋∏
i=1

(
z + |ζi|−1/2

)(
z − |ζi|−1/2

)
, (2)

using the fact that the ζi are all strictly negative. Hence, the kth inverse power sums of roots of
MG are equal to the 2kth inverse power sums of roots of M̃G (up to a factor of 1/2). We need
the following two lemmas.

5

Lemma 2.3. For every tree T and every vertex r ∈ T , we have

z−1M̃T−r(z
−1)

M̃T (z−1)
=

∞∑
k=0

(A2k
T)(r, r) · z2k.

Lemma 2.4. For every graph G = (V,E), we have

M̃′
G(z) =

∑
r∈V

M̃G−r(z).

Before we prove these technical lemmas, we show how to use them to relate moments of roots
to closed walks in the self-avoiding walk trees.

Proof of Proposition 2.2. The idea is to encode
∑⌊n/2⌋

i=1 |ζi|−k in a power series. We’ll then express
this power series in two different ways, one based on moments of roots, and the other based on
walks. The claim will then follow by comparing coefficients.

We use the logarithmic derivative
(
log M̃G(z)

)′
. On the one hand, we have

(
log M̃G(z)

)′
= (n− 2 · ⌊n/2⌋) (log z)′ +

⌊n/2⌋∑
i=1

(
log
(
z + |ζi|−1/2

)′
+ log

(
z − |ζi|−1/2

)′)
(Using Eq. (2))

= (n− 2 · ⌊n/2⌋) · z−1 + 2z−1

⌊n/2⌋∑
i=1

1

1− 1
z2|ζi|

(Calculation)

= z−1 ·

n+ 2

∞∑
k=1

z−2k

⌊n/2⌋∑
i=1

|ζi|−k

 . (Taylor series for 1
1−x)

On the other hand,(
log M̃G(z)

)′
=

M̃′
G(z)

M̃G(z)

=
∑
r∈V

M̃G−r(z)

M̃G(z)
(Lemma 2.4)

=
∑
r∈V

M̃T (r)−r(z)

M̃T (r)(z)
(Theorem 1.2)

= z−1
∞∑
k=0

z−2k
∑
r∈V

(
A2k

T (r)

)
(r, r). (Lemma 2.3)

Comparing coefficients yields the claim.

Proof of Lemma 2.3. By Lemma 1.4, the left-hand side is precisely z−1 det(z−1I−AT−r)
det(z−1I−AT) . On the

other hand, the right-hand side is precisely the diagonal entry
∞∑
k=0

zkAk
T (r, r) = (I − zAT)

−1(r, r) = z−1 · (z−1I −AT)
−1(r, r),

again using the fact that the odd powers of AT have zero diagonal. Hence, the claim is equivalent
to showing that

det(z−1I −AT) ·
(
z−1I −AT

)−1
(r, r) = det(z−1I −AT−r).

Observe that z−1I − AT−r is precisely the submatrix of z−1I − AT corresponding to vertices not
equal to u. Hence, if we write B = z−1I−AT , then we’re asking for det(B) ·B−1(r, r) = det(B−r)
where B−r is the submatrix of B obtained by deleting the row and column corresponding to r.
For this, define the adjugate of B by adj(B) = det(B) ·B−1. The claim is equivalent to saying that
adj(B)r,r = det(B−r). This follows immediately from the relation B · adj(B) = det(B) · I and the
fact that det(B) admits a decomposition into determinants of submatrices of B.

6

Proof of Lemma 2.4. The proof is essentially the same idea as the one used to show Lemma 1.3.
We have

M̃′
G(z) =

⌊(n−1)/2⌋∑
k=0

(−1)kz(n−1)−2k · (n− 2k) ·mk(G).

On the other hand,

∑
r∈V

M̃G−r(z) =

⌊(n−1)/2⌋∑
k=0

(−1)kz(n−1)−2k ·
∑
r∈V

mk(G− r)

=

⌊(n−1)/2⌋∑
k=0

(−1)kz(n−1)−2k · (n− 2k) ·mk(G).

Here, in the final step, we used the fact that every size-k matching in G−r is also a size-k matching
in G. Furthermore, each such matching gets counted n − 2k times, once for each unmatched
vertex.

2.2 Estimating MG(λ) on All of R≥0

Now suppose we wish to compute MG(λ) for some λ ∈ R≥0. In this more general setting, if
λ > 1

4(∆−1) , we no longer have a zero-free disk containing 0 and λ. However, Theorem 1.1 gives us
a zero-free strip around the interval [0, λ]. So, we let φλ : C → C be some low-degree polynomial
mapping the unit disk to a strip around [0, λ] (e.g. a modification of the one constructed in the
previous lecture). Then the composition MG(φλ(z)) is a polynomial which is zero-free within a
disk around 0 by Theorem 1.1 and the properties imposed on φλ. We can then apply Barvinok’s
vanilla algorithm to this polynomial.

For this, we need to compute the coefficients {F (k)(0)}mk=0 where F (z) = logMG(φλ(z)). We
could view this as the composition (f ◦ φλ)(z) where f = logMG as above, and apply something
like Faà di Bruno’s Formula to write {F (k)(0)}mk=0 in terms of {f (k)(0)}mk=0 and {φ(k)

λ (0)}mk=0.
However, this would naïvely cost at least quasipolynomial running time again, which we want
to avoid. Instead, we use the moments

∑|n/2|
i=1 |ζi|−k for k = 0, . . . ,m to compute the low-degree

coefficients
{
M(k)

G (0)
}m

k=0
= {k! ·mk}mk=0 of the matching polynomial. This allows us to efficiently

compute the low-degree coefficients of the polynomial MG ◦φλ, from which we can obtain the low-
degree Taylor coefficients of logMG(φλ(z)) as we did in the previous lecture.

This first step is made possible with the help of the following lemma. Once we have it, the
proof of Theorem 2.1 in the general case is immediate.

Lemma 2.5 (Newton Identities). Let q(x) =
∑n

k=0 akx
k be a univariate polynomial with roots

r1, . . . , rn. Then for every k ∈ N,

k · ak = −
k−1∑
j=0

aj ·
n∑

i=1

r
−(k−j)
i .

(Here, we take ak = 0 if k > n.)

Proof. On the one hand, since q(x) = a0 ·
∏n

i=1

(
1− x

ri

)
,

(log q(x))′ =

(
log(a0) +

n∑
i=1

log

(
1− x

ri

))′

=

n∑
i=1

−1/ri
1− x

ri

= −
∞∑
k=1

xk−1
n∑

i=1

r−k
i .

In particular, using (log q(x))′ = q′(x)
q(x) ,

q′(x) = −q(x) ·
∞∑
k=1

xk−1
n∑

i=1

r−k
i .

7

On the other hand,

q′(x) =

n∑
k=1

kak · xk−1.

Thus,

n∑
k=1

kak · xk−1 = −
n∑

j=0

∞∑
k=1

ajx
j+k−1

n∑
i=1

r−k
i .

Comparing coefficients yields the claim.

References
[God93] Christopher David Godsil. Algebraic Combinatorics. 1st ed. Chapman & Hall, Inc., 1993

(cit. on p. 2).

[HL72] Ole J. Heilmann and Elliott H. Lieb. “Theory of monomer-dimer systems”. In: Commu-
nications in Mathematical Physics 25 (1972), pp. 190–232 (cit. on p. 1).

[PR17] Viresh Patel and Guus Regts. “Deterministic Polynomial-Time Approximation Algo-
rithms for Partition Functions and Graph Polynomials”. In: SIAM Journal on Computing
46.6 (2017), pp. 1893–1919 (cit. on pp. 1, 4).

8

	Zero-Freeness for Matchings
	Reduction to Trees: Return of the Self-Avoiding Walks
	The Matching Polynomial on Trees

	Improved Running Time for Polynomial Interpolation
	On Moments of Roots of MG: Proof of prop:matchpoly-root-moments
	Estimating MG() on All of R0

