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In the next few lectures, we explore a very different type of algorithm based on complex analysis
and zero-freeness of the partition function, viewed as a polynomial. We’ll further see a different
perspective on phase transitions based on clustering of the zeros. For this lecture, the flagship
application of this technique is the following: Recall that for a complex matrix A ∈ Cn×n, its
permanent is defined as

per(A)
def
=
∑
σ∈Sn

n∏
i=1

Ai,σ(i),

which can be viewed as a multivariate polynomial in the entries of A; here, Sn denotes the group
of permutations on [n].

Theorem 0.1 ([Bar16b]; see also [Bar17; Bar16a]). Let 0 < η < 1/2 be arbitrary. If A ∈ Cn×n

satisfies

|Aij − 1| < η, ∀i, j ∈ [n],

then for every ϵ > 0, there exists a multivariate polynomial q = qn,η,ϵ of degree Oη(log(n/ϵ)) such
that |q(A)− log per(A)| ≤ ϵ. Furthermore, q can be computed in deterministic quasipolynomial
time, and so there exists a deterministic quasipolynomial time algorithm for estimating per(A) up
to (1± ϵ)-multiplicative error.

Here, quasipolynomial in n means a function of the form 2polylog(n), and Oη(·) means the con-
stant depends on some unspecified function of η.1 This theorem asserts that log per(A) can be
approximated by a low-degree polynomial if A is not too far away from the all-ones matrix 11⊤, for
which per

(
11⊤) = n! trivially. Note that an ϵ-additive approximation to log per(A) is equivalent

to e±ϵ ≈ 1± ϵ multiplicative approximation to per(A).
The general algorithmic framework we’ll use here is the elegant polynomial interpolation algo-

rithm pioneered by Barvinok. Theorem 0.1 is essentially the best known algorithm for estimating
the permanent of a matrix with possibly negative or complex entries. In the very special case
A ∈ Rn×n

≥0 , we can do much better using Markov chain Monte Carlo methods [JSV04]. Later on,
we’ll see that for partition functions coming from graphs (e.g. the Ising model), we can modify the
algorithm to run in polynomial time with exponent depending on the maximum degree ∆, similar
to the running time of the correlation decay algorithm.

1 The Taylor Series Approach to Approximate Counting
The basic idea behind the approach to Theorem 0.1 is to estimate log per(A) using Taylor series.
Recall that for a real smooth univariate function f : R → R (e.g. some univariate restriction
of log per(A)) with derivatives f (k)(x)

def
= dk

dxk f(x) and Taylor series f(x) =
∑∞

k=0
f(k)(0)

k! · xk

converging in a neighborhood (−r, r) of 0, the truncation
∑m

k=0
f(k)(0)

k! · xk approximates f(x)
uniformly in the interval [−(r− η), r− η] ⊊ (−r, r) up to additive error Cη,m|x|m+1 where Cη,m =
sup|y|≤r−η|f(m+1)(y)|

(m+1)! is some constant depending on η. This error decays exponentially as we use

1Typically, we use this when the function of η is too cumbersome to write down explicitly, or if it is given
implicitly via e.g. continuity arguments.
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larger and larger degree truncations. If the rate of exponential decay is a constant, then for
m ≤ Oη(log(n/ϵ)) where Oη(·) depends on Cη,m, we get an ϵ-additive approximation to f uniformly
in the interval [−(r − η), r − η].

However, it could be that the rate of exponential decay is extremely slow e.g. when η ≤ O(1/n)
and x is within O(1/n) of the boundary of the region of convergence (−r, r). For such “bad
points” x, f(x) isn’t “sufficiently smooth” and we need polynomials of much higher degree to
maintain the same level of approximation. In our setting, since the function f under consideration
is the logarithm of a (multivariate) polynomial, these “bad points” are precisely the points where
per(A) ≈ 0. Conversely, we’ll show that if the input A is bounded away from the zeros of per(A),
then we can indeed obtain accurate approximations via low-degree Taylor series. We emphasize
that this is a totally generic scheme for approximate counting: If there is a complicated partition
function Z we want to compute, then by viewing it as a polynomial in some natural underlying
parameter (e.g. inverse temperature β for the Ising model, or fugacity λ for the hardcore model),
we can approximate Z using the Taylor series of logZ whenever the variable is bounded away from
the zeros of Z.

Proposition 1.1 ([Bar17]). Let g : C → C be a degree-d univariate complex polynomial with roots
ζ1, . . . , ζd ∈ C, and suppose there exists a radius R > 1 such that |ζ|i > R for all i = 1, . . . , d. If
we write f(z) = log g(z) and define

Tm(z)
def
=

m∑
k=0

f (k)(0)

k!
zk, ∀m ∈ N,

then

f (k)(0)

k!
= −1

k

d∑
i=1

ζ−k
i , ∀k ∈ N,

|f(z)− Tm(z)| ≤ d

(m+ 1)Rm(R− 1)
, ∀ |z| ≤ 1,∀m ∈ N.

Remark 1. In Section 3, we will extend this result to much more general types of regions in C,
beyond simply scaled disks.

Proof. We may express f, g as g(z) = g(0)
∏d

i=1

(
1− z

ζi

)
and f(z) = f(0) +

∑d
i=1 log

(
1− z

ζi

)
.

Note this representation is valid since |ζi| > R > 1 for all i = 1, . . . , d by assumption. Applying
the Taylor series of z 7→ log(1− z), which converges in the entire unit disk D = D(0, 1), we have

log

(
1− z

ζi

)
= −

m∑
k=1

1

k
·
(
z

ζi

)k

+ ϵi,m,

where the error term ϵi,m ∈ C satisfies

|ϵi,m| =

∣∣∣∣∣
∞∑

k=m+1

1

k
·
(
z

ζi

)k
∣∣∣∣∣ (By definition)

≤
∞∑

k=m+1

1

k
·
∣∣∣∣ zζi
∣∣∣∣k (Triangle Inequality)

≤ 1

m+ 1

∞∑
k=m+1

|ζi|−k (Using |z| ≤ 1)

≤ 1

(m+ 1)Rm(R− 1)
. (Using |ζi| > R > 1)

Note that f(k)(0)
k! = − 1

k

∑d
i=1 ζ

−k
i for all k ∈ N by linearity. Furthermore, Tm(z) = f(0) −∑d

i=1

∑m
k=1

1
k ·
(

z
ζi

)k
, and |f(z)− Tm(z)| ≤

∣∣∣∑d
i=1 ϵi,m

∣∣∣ ≤ d
(m+1)Rm(R−1) .

Note that to use Proposition 1.1, we need to be able to compute the derivatives f (k)(0) of
f = log g. It turns out we can do this easily assuming we have access to the derivatives of g itself.
This is the content of the following lemma. The latter is still a somewhat nontrivial task, but we’ll
see later how the derivatives of g itself have nice combinatorial interpretations.
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Lemma 1.2 (Derivatives of log g). Let z ∈ C be arbitrary. Given the first m + 1 derivatives
{g(k)(z)}mk=0 of g, we can compute the first m + 1 derivatives {f (k)(z)}mk=0 of f = log g in time
O(m2).

Proof. Observe that for any f (1)(z) = g(1)(z)
g(0)(z)

, or equivalently, g(1)(z) = f (1)(z) · g(0)(z). By
differentiating the latter identity, we have inductively that

g(k)(z) =

k−1∑
j=0

(
k − 1

j

)
· f (k−j)(z) · g(j)(z), ∀k ∈ N.

After rearranging appropriately, we see that each f (k)(z) can be computed from the previously
computed coefficients f (0)(z), . . . , f (k−1)(z) and the given coefficients g(0)(z), . . . , g(k)(z). Each
of these computations takes roughly O(k)-time, and so summing over all 0 ≤ k ≤ m yields an
O(m2)-time algorithm.

2 Zero-Freeness of the Permanent
In this section, we prove Theorem 0.1 using Proposition 1.1 and Lemma 1.2. The most nontrivial
task is establishing an appropriate zero-free region.

Theorem 2.1 ([Bar17]). There exists a universal constant η0 ≥ 1/2 such that if A ∈ Cn×n satisfies
|Aij − 1| ≤ η0 for all i, j ∈ [n], then per(A) ̸= 0.

Before we prove this theorem, we use it to finish the proof of Theorem 0.1.

Proof of Theorem 0.1. Fix A ∈ Cn×n such that |Aij − 1| ≤ η for all i, j ∈ [n], where η < 1/2 < η0
is some constant. Define the univariate polynomial

g(z)
def
= per

(
zA+ (1− z)11⊤) = per

(
11⊤ + z

(
A− 11⊤)) .

By Theorem 2.1, the polynomial g satisfies g(z) ̸= 0 for all |z| ≤ R
def
= η0

η . Hence, by Proposition 1.1,

we have that for m ≤ O
(

1
1−(η/η0)

log(n/ϵ)
)
, the order-m Taylor approximation Tm to f = log g

satisfies |Tm(z)− log g(z)| ≤ O(ϵ), or equivalently, (1− ϵ)g(z) ≤ exp (Tm(z)) ≤ (1 + ϵ)g(z).
All that remains to show is that we can indeed compute Tm(z) in deterministic quasipolynomial

time. By Lemma 1.2, it suffices to show that we can compute all coefficients {g(k)(0)}mk=0 up to
m ≤ O

(
1

1−(η/η0)
log(n/ϵ)

)
in deterministic quasipolynomial time. We do this by brute force.

Observe that

g(k)(z) =
∑
σ∈Sn

dk

dzk

n∏
i=1

(
1 + z(Ai,σ(i) − 1)

)
=
∑
σ∈Sn

∑
S⊆[n]

∏
i∈S

(Ai,σ(i) − 1) · dk

dzk
z|S|.

It follows that

g(k)(0) = k! ·
∑
σ∈Sn

∑
S∈([n]

k )

∏
i∈S

(Ai,σ(i) − 1)

= k!(n− k)! ·
∑

S∈([n]
k )

∑
σ:S→[n]
injective

∏
i∈S

(Ai,σ(i) − 1).

Note the second identity follows from the fact that we only care about the image of S ∈
(
[n]
k

)
under

σ. Hence, we can just sum over the possible images, i.e. injective maps σ : S → [n], picking up a
multiplicative factor of (n− k)! for the number of possible extensions of σ into a full permutation
of [n]. For each k, the final expression above is a summation of at most nO(k) terms, and so we
can compute g(k)(0) deterministically in nO(k)-time via brute force enumeration. Since we’re only
asking for the first m ≤ Oη(log(n/ϵ)) terms, this amounts to a quasipolynomial time algorithm.
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All that remains is to establish the zero-free region guaranteed by Theorem 2.1. Before we
do this, we make a few remarks. The logarithmic bound on the number of coefficients needed
is essentially the best possible. Hence, the main bottleneck preventing us from getting a truly
polynomial-time algorithm is computation of the coefficients {g(k)(0)}mk=0. In most applications
like the permanent, we can do this in quasipolynomial time. Later, we will see that for graph
polynomials, we can reduce the computation cost to a polynomial with exponent depending on the
maximum degree ∆ of the input graph. We emphasize that in this framework, the most challenging
part is establishing a suitable zero-free region.

2.1 Zero-Freeness via Barvinok’s Inductive Angle Method
For the proof of Theorem 2.1, we use a clever inductive argument due to Barvinok [Bar17]. For
each j ∈ [n], we write Aj ∈ C(n−1)×(n−1) for the submatrix of A obtained by deleting the first row
and the jth column of A. Then

per(A) =

n∑
j=1

A1,j · per(Aj).

Clearly, each Aj inherits the property
∥∥Aj − 1n−11

⊤
n−1

∥∥
∞ ≤ η0 from

∥∥A− 1n1
⊤
n

∥∥
∞ ≤ η0, where

for convenience we write ∥·∥∞ for the maximum entry in absolute value.2 Now, roughly speaking,
there are two reasons that per(A) could be close to 0. Either

• the numbers per(Aj) themselves are close to 0, or

• {per(Aj)}nj=1 as complex numbers (or vectors in R2) all point in different directions which
“cancel” each other, so that

∑n
i=1 A1,j · per(Aj) ≈ 0 even if individually each per(Aj) is far

from 0.

This second case obstructs us from using per(A) ̸= 0 directly as the inductive hypothesis, even
though this is the most “obvious” choice. To get around this, we strengthen the inductive hy-
pothesis. We will impose that for any two matrices A,B which differ in at most one row or
column, and which satisfy

∥∥A− 1n1
⊤
n

∥∥
∞ ,
∥∥B − 1n1

⊤
n

∥∥
∞ ≤ η0, we have that the angle between

per(A),per(B) ∈ C does not exceed some threshold θ; later, we will see that we can take θ = π/2.
The key technical lemma which will make this argument go through is the following.

Lemma 2.2 ([Bar17]). Let u1, . . . , un ∈ C be nonzero complex numbers such that for some 0 <
θ < 2π/3, we have ∠(ui, uj) ≤ θ for all i, j ∈ [n]. Let a1, . . . , an be complex numbers satisfying
∥a− 1n∥∞ ≤ η0. Then we have:

•
∑n

i=1 aiui ̸= 0, and

• ∠ (
∑n

i=1 ui,
∑n

i=1 aiui) ≤ arcsin
(

η0

cos(θ/2)

)
.

Before we prove this lemma, we first use it to complete the proof of the zero-free region for the
permanent.

Proof of Theorem 2.1. We prove the claim by induction on n. Let 0 < θ < 2π/3 be a parameter
to be determined later. For each n ∈ N, let IH(n) denote the following statement:

(1) For every complex matrix A ∈ Cn×n satisfying
∥∥A− 1n1

⊤
n

∥∥
∞ ≤ η0, per(A) ̸= 0.

(2) For every pair of complex matrices A,B ∈ Cn×n which differ in at most one row/column,
and which satisfy

∥∥A− 1n1
⊤
n

∥∥
∞ ≤ η0, we have ∠(per(A),per(B)) ≤ θ.

We first prove IH(n) assuming IH(n − 1), since this induction step is the most interesting and
nontrivial. Let A ∈ Cn×n satisfy

∥∥A− 1n1
⊤
n

∥∥
∞ ≤ η0. By (2) for IH(n − 1), we may apply the

first conclusion of Lemma 2.2 with {uj}nj=1 = {per(Aj)}nj=1 and {aj}nj=1 = {A1,j}nj=1 to deduce
per(A) =

∑n
j=1 A1,j · per(Aj) ̸= 0.

2In other words, we view the input matrix as a vector with n2-dimensions, and take its ℓ∞-norm. Note this is
not the same as the matrix norm induced by the ℓ∞ vector norm.
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Now, let A,B ∈ Cn×n satisfy
∥∥A− 1n1

⊤
n

∥∥
∞ ,
∥∥B − 1n1

⊤
n

∥∥
∞ ≤ η0 and differ in at most one

row/column; without loss of generality, we can assume A,B differ in the first row. Then

∠ (per(A),per(B)) ≤ ∠

(
n∑

i=1

A1,j · per(Aj),

n∑
i=1

per(Aj)

)

+ ∠

(
n∑

i=1

per(Aj),

n∑
i=1

per(Bj)

)

+ ∠

(
n∑

i=1

per(Bj),

n∑
i=1

B1,j · per(Bj)

)
.

Note the second term is zero since per(Aj) = per(Bj) for all j by the assumption that A,B
differ only in the first row. Furthermore, the third term is the same as the first term except A is
replaced by B. By the second conclusion of Lemma 2.2, we get the first term is upper bounded by
arcsin

(
η0

cos(θ/2)

)
and so we get

∠ (per(A),per(B)) ≤ 2 arcsin

(
η0

cos(θ/2)

)
.

Choosing θ = π/2 and η0 = 1/2, we get the right-hand side is exactly θ. This establishes IH(n)
given IH(n− 1).

For this choice of θ = π/2 and η0 = 1/2, we finish the proof by establishing the base case
IH(1). When n = 1, the first claim (1) is obvious. (2) says that for any a, b ∈ C satisfying
|z − 1| , |w − 1| ≤ 1/2, we have ∠(z, w) ≤ π/2. For this, it suffices to show that for any z ∈ C
satisfying |z − 1| ≤ 1/2, we have |arg(z)| ≤ π/4. If we write z = a + bi for a, b ∈ R, then
tan(arg(z)) = b

a , so |arg(z)| ≤ π/4 is equivalent to requiring |b| ≤ |a|. For this, observe that
|z − 1| ≤ 1/2 translates to (a − 1)2 + b2 ≤ 1/4; in particular, we must have |a− 1| ≤ 1/2 and
|b| ≤ 1/2 so |b| ≥ |a| as desired.

We finally prove the angle lemma.

Proof of Lemma 2.2. For convenience, write u =
∑n

i=1 ui and v =
∑n

i=1 aiui. First, we claim the
following “reverse Triangle Inequality”

|u| ≥ cos

(
θ

2

) n∑
i=1

|ui| . (1)

If we have this, then

|u− v| =

∣∣∣∣∣
n∑

i=1

(ai − 1) · ui

∣∣∣∣∣ ≤ η0

n∑
i=1

|ui| < |u| ,

where in the last step, we used Eq. (1) and the assumption η0 ≤ cos(θ/2). It immediately follows
by the Triangle Inequality that

|v| ≥ |u| − |u− v| > 0,

i.e. v ̸= 0, establishing the first item. Furthermore, if we view u, v ∈ C instead as vectors in R2,
then since |u− v| < |u|,

sin (∠(u, v)) =

∣∣∣u− ⟨u,v⟩
|v|2 · v

∣∣∣
|u|

≤ |u− v|
|u|

≤ η0
cos(θ/2)

,

from which the second item follows. Hence, all that remains is to prove Eq. (1). To do this, we
will construct a suitable vector y ∈ C onto which we will project u1, . . . , un.

First, we claim that there is a convex cone K ⊆ C ∼= R2 of angle θ and vertex at 0, i.e.
K = cone(z, w) where its extremal rays z, w satisfy ∠(z, w) ≤ θ, such that u1, . . . , un ∈ K. This
crucially uses the fact that all pairwise angles between the u1, . . . , un are at most θ, and that
θ < 2π/3; if θ = 2π/3, we can violate this containment by a small-aperture convex cone since we
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could take u1, . . . , un to be a bunch of copies of the third primitive roots of unity 1, e2πi/3, e4πi/3.
To see this, we just need to show that 0 /∈ conv(u1, . . . , un). Suppose for contradiction that
0 ∈ conv(u1, . . . , un). Then by Carathéodory’s Theorem, there exists distinct i, j, k such that
0 ∈ conv(ui, uj , uk). But then it must be that two of the vectors ui, uj , uk have angle at least 2π/3
from each other, a contradiction.

Thus, we have shown that u1, . . . , un ∈ K = cone(z, w) for z, w ∈ C satisfying ∠(z, w) ≤ θ.
Take y to be the bisector of K, i.e. the (unit) vector in C with the same angle as that of z+w

2 .
Since u1, . . . , un ∈ K, we have ∠(ui, y) ≤ θ/2, whence cos(θ/2) ≤ cos (∠(ui, y)) =

⟨ui,y⟩
|ui| . It follows

that ⟨ui, y⟩ ≥ cos(θ/2) · |ui| for all i ∈ [n] and

|u| ≥ ⟨u, y⟩ =
n∑

i=1

⟨ui, y⟩ ≥ cos

(
θ

2

) n∑
i=1

|ui|

as desired.

3 Beyond Zero-Free Disks
The method from Proposition 1.1 requires that the input polynomial g is zero-free within an entire
disk of radius R > 1 around 0, assuming we can easily compute g(0). In practice, we oftentimes
cannot hope for such a zero-free disk containing both the point at which we wish to (approximately)
compute g, and the point at which evaluating g is easy. For example, for the hardcore model, we
have the following theorem due to Peters–Regts [PR19], originally conjectured by Sokal [Sok01].

Theorem 3.1 ([PR19]). Let ZG(λ) =
∑

I⊆V λ|I| denote the univariate independence polynomial
of a graph G, where the summation is only over independent sets I ⊆ V . Then for every ∆ ∈ N,
there exists δ > 0 such that ZG(λ) ̸= 0 for all λ in the strip

{z ∈ C : ∃w ∈ [0, λc(∆)) s.t. |z − w| < δ}.

We refer interested readers to [Ben+23] for the current state-of-the-art on the zeros of the
independence polynomial on bounded-degree graphs. We will not prove Theorem 3.1, only using it
as an (important) illustrative example. The following result allows us to handle zero-free regions
which are strips.

Proposition 3.2. Let g : C → C be a degree-d univariate complex polynomial, and suppose there
exists δ > 0 such that g is nonzero in a δ-strip around the interval [0, 1], i.e. g(z) ̸= 0 for all
z ∈ C satisfying −δ ≤ Re z ≤ 1 + δ and |Im z| ≤ δ. Then for every ϵ > 0, there exists a degree-m
polynomial Tm with m ≤ Oδ(log(n/ϵ)) such that

|Tm(z)− log g(z)| ≤ ϵ

uniformly in the δ
2 -strip around [0, 1]. Furthermore, the m+ 1 coefficients of Tm can be efficiently

computed given the numbers {g(k)(0)}mk=0.

The key technical lemma we will need is the following, which constructs a polynomial map from
the unit disk to a strip around [0, 1].

Lemma 3.3. For every 0 < δ < 1, define

φδ(z)
def
=

1

σ

N∑
k=1

(αz)k

k
,

where N ≤ O(e1/δ) is the degree, α def
= 1 − exp(−1/δ) < 1, and σ

def
=
∑N

k=1
αk

k ensures φ(1) = 1.

Then for every z ∈ C satisfying |z| ≤ 1−e−1−(1/δ)

1−e−1/δ

def
= R, we have

−δ ≤ Reφδ(z) ≤ 1 + 2δ

|Imφδ(z)| ≤ 2δ.

Note that R > 1 and φδ(0) = 0.
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Proof Sketch. We only provide a sketch of the proof; see [Bar17] for more details. Consider the
function fδ(z)

def
= −δ log(1 − αz) defined on the closed unit disk D(0, 1). Clearly, fδ(0) = 0 and

fδ(1) = 1. It is straightforward to directly check that for all z satisfying |z| ≤ 1,

−δ log (2Re fδ(z)) ≤ 1 + δ

|Im fδ(z)| ≤ πδ/2.

Since φδ is the degree-N Taylor polynomial for fδ (suitably renormalized by σ) an argument similar
to Proposition 1.1 which accounts for the additional approximation error completes the proof.

Proof Sketch of Proposition 3.2. Let G(z) = g(φδ(z)), where φδ is furnished by Lemma 3.3. Then
G is a degree-d polynomial with roots have magnitude at least R > 1, where R is as in Lemma 3.3
and d = deg(g) · deg(φδ) ≤ O(e1/δ) · deg(g). Let Tm denote the degree-m Taylor approximation to
logG with m ≤ Oδ(log(n/ϵ)). Proposition 1.1 gives us the desired approximation result. The m+1
coefficients of Tm can be computed in O(m2)-time from the numbers {G(k)(0)}mk=0 by Lemma 1.2.
Furthermore, since g, φδ are polynomials, so is G and k! ·G(k)(0) gives the coefficient of zk in G.
Clearly this can be computed given access to the first m coefficients of g and φδ as polynomials,
which are given by {k! · g(k)(0)}mk=0 and {k! · φ(k)

δ (0)}mk=0, respectively.
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