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In this lecture, we demonstrate the correlation decay algorithm for the hardcore model on an
arbitrary bounded-degree graph within the uniqueness regime. For reader’s convenience, we have
reproduced the main theorem we aim to prove.

Theorem 0.1 (Weitz [Wei06]). If λ < λc(∆), then SSM holds for the hardcore model on any
graph of maximum degree ∆. Furthermore, there exists an FPTAS for estimating ZG(λ) for every
graph G = (V,E) of maximum degree ∆ and every λ < λc(∆). If λ ≤ (1− δ)λc(∆) for a constant
0 < δ < 1, the running time of this algorithm scales as (n/ϵ)O(

1
δ log∆), where 0 < ϵ < 1 is the

estimation error.

1 Contraction of the Tree Recursion via the Potential Method
Recall the (multivariate) tree recursion for the hardcore model is given by

Fd(p1, . . . , pd) =
λ
∏d

i=1(1− pi)
1 + λ

∏d
i=1(1− pi)

, ∀p1, . . . , pd ∈ [0, 1].

Furthermore, if φ : [0, 1] → R≥0 ∪ {+∞} is a smooth strictly increasing potential function, then
we define the modified tree recursion for the change of variables m = φ(p) by

Gd(m1, . . . ,md) = φ(Fd(φ
−1(m1), . . . , φ

−1(md))), ∀m1, . . . ,md ∈ R≥0 ∪ {+∞}.

Recall that we further write fd, gd for their univariate analogs (i.e. when p1 = · · · = pd = p and
m1 = · · · = md = m).

In the previous lecture, we saw that SSM for the hardcore Gibbs measure on arbitrary trees of
maximum degree ∆ holds if we can construct φ satisfying the contraction property ∥∇Gd(m)∥1 ≤
1 − O(δ) (plus very mild boundedness assumptions). We now exhibit a good choice of φ due to
Li–Lu–Yin [LLY13], which will complete the proof of SSM on trees of maximum degree ∆ whenever
λ < λc(∆).

Define φ such that Φ(p)
def
= φ′(p) = 1√

p·(1−p) .
1 Note φ satisfies all of the required smoothness,

monotonicity, and boundedness properties.2 The main result is the following.

Proposition 1.1 (Contraction for Hardcore Tree Recursion; [LLY13]). Let φ : [0, 1] → R≥0 ∪
{+∞} be defined implicitly via its derivative Φ(p) = φ′(p) = 1√

p(1−p) . If λ ≤ (1− δ) · λc(∆), then
the modified multivariate tree recursion Gd = φ ◦Fd ◦φ−1 satisfies ∥∇Gd(m)∥1 ≤ 1−O(δ) for all
m ∈ Rd

≥0 and all 1 ≤ d ≤ ∆− 1.

This result completes the proof that SSM holds on trees of maximum degree ∆ whenever
λ < λc(∆). We establish the desired contractive property in two steps. The first lemma below
reduces the multivariate case to the univariate case, which is simpler to analyze. The second lemma
is a consequence of our analysis of fd and its fixed points.

1Integrating this, one gets φ(p) = 2 arctanh
(√

p
)
. However, we will not need the explicit formula for φ itself. Its

derivative Φ is what matters.
2As we mentioned in the previous lecture, we only need the boundedness in the image of a constant number of

iterations of Fd, e.g. the interval
[

λ
λ+(1+λ)d

, λ
1+λ

]
for the hardcore model.

1



Lemma 1.2. For every m ∈ Rd
≥0, there exists m ∈ R≥0 such that

∥∇Gd(m)∥1 ≤ ∥∇Gd(m · 1)∥1 = |g′d(m)| .

Lemma 1.3. Suppose λ ≤ (1− δ) · λc(∆). Then for every m ∈ R≥0 and every 1 ≤ d ≤ ∆− 1, we
have that |g′d(m)| ≤ 1−O(δ).

These two lemmas combined immediately imply Proposition 1.1. Note that their proofs are
completely independent of each other. We prove each in turn.

Proof of Lemma 1.2. By the Chain Rule and the Inverse Function Theorem, we have via calcula-
tion that

∂miGd(m) =
Φ(Fd(p))

Φ(pi)
· ∂piFd(p) = −

√
Fd(p) ·

√
pi,

where mi = φ(pi). As a special case, this also says that g′d(m) = −d ·
√
fd(p) ·

√
p where m = φ(p).

It follows that

∥∇Gd(m)∥21 = Fd(p) ·

(
d∑

i=1

√
pi

)2

≤ d · Fd(p) ·
d∑

i=1

pi (Cauchy–Schwarz)

= d2 · Fd(p) ·

(
1− 1

d

d∑
i=1

(1− pi)

)

≤ d2 · Fd(p) ·

(
1−

d∏
i=1

(1− pi)1/d
)

(AM-GM Inequality)

= d2 · fd(p) · p (Setting p = 1−
∏d

i=1(1− pi)1/d)

= |g′d(m)|2 .

Taking square roots gives the claim.

Proof of Lemma 1.3. As we saw in the previous lecture, if λ ≤ (1−δ)·λc(∆), then |f ′d(p̂)| ≤ 1−O(δ),
where p̂ = p̂(λ, d) is the unique fixed point of fd. Hence, the crux of the proof will be showing
that |g′d(m)| ≤

√
|f ′d(p̂)| for all m ∈ R≥0. Since g′d(m) = −d ·

√
fd(p) ·

√
p, where m = φ(p)

(or p = φ−1(m)), and f ′d(p) = −d ·
1−fd(p)

1−p · fd(p), the claim is equivalent to showing that for all
p ∈ [0, 1], we have d · fd(p) · p ≤ p̂.

Let p∗ = p∗(λ, d) ∈ [0, 1] maximize the function p 7→ fd(p) · p, whose derivative is given by

f ′d(p) · p+ fd(p) = fd(p) ·
(
1− d · 1− fd(p)

1− p
· p
)
.

Since p 7→ fd(p) · p is zero at p = 0 and p = 1, it must be that p∗ ∈ (0, 1) is a stationary point,
whence p∗ must satisfy

1− p∗

1− fd(p∗)
· 1
p∗

= d.

It follows that

sup
0≤p≤1

{d · fd(p) · p} =
1− p∗

1− fd(p∗)
· fd(p∗).

Note that the function p 7→ 1−p
1−fd(p)

· fd(p) evaluates to p̂ on input p̂. Furthermore, both this
function as well as the function p 7→ 1−p

1−fd(p)
· 1p are both monotone decreasing in p. Hence, the

desired inequality is equivalent to 1−p∗

1−fd(p∗) ·
1
p∗ ≤ 1−p̂

1−fd(p̂)
· 1p̂ . By definition of p∗, the left-hand

side evaluates to d; similarly, by definition of p̂, the right-hand side evaluates to 1/p̂. Hence, the
desired inequality is equivalent to p̂ ≤ 1/d, which holds since λ ≤ λc(∆), as we saw in the previous
lecture.
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1.1 Why This Choice of φ?
At the moment, there aren’t systematic ways of discovering/designing good potential functions.
[LLY13] gave some heuristics for discovering them in the special case of two-spin systems. With
the benefit of hindsight, we can provide some intuitive justification for Φ(p) = φ′(p) = 1√

p(1−p) .
Recall our goal is to select φ such that

∥∇Gd(m)∥1 ≤ 1−O(δ), ∀m ∈ Rd
≥0.

Let’s see what happens if we didn’t use any potential function. Then

∥∇Fd(p)∥1 =

d∑
i=1

1− Fd(p)

1− pi
· Fd(p).

By monotonicity of Fd(p) and the fact that Fd(p) ≤ λ
1+λ ≤ O(1/∆) is always upper bounded by

some (small) constant, we have the right-hand side is maximized at p = 0, yielding dλ
(1+λ)2 . For

this to be a contraction, we need λ ≤ 1/(d− 2), which is very far from the true λc(d+ 1).
One reason this fails is because we are using a truly worst-case bound of Fd(p) ≤ λ

1+λ every-
where. On the other hand, when we used Φ(p) = 1√

p(1−p) , we saw that we got

∥∇Gd(m)∥1 =

d∑
i=1

√
Fd(p) ·

√
pi.

This is a much more well-behaved quantity because the hardcore model is antiferromagnetic. If
any pi is too large, then Fd(p) will be small, and vice versa. Thus the terms

√
Fd(p) and √pi

counterbalance each other. A concrete example here is to consider the star on d vertices, where
Fd(p) gives the marginal of the center vertex, and the p1, . . . , pd gives the marginals of the leaves
as isolated vertices.

Historically, it was well-known that one can take advantage of this repulsive nature of the
hardcore model by studying two iterations of Fd simultaneously. For instance, this is what we
did in the previous lecture in the univariate setting, where we looked at f◦2d and its analytic
properties. However, since Fd has d variables, studying two levels at a time yields a recursion
with d2 variables, which becomes unwieldy extremely quickly. At the expense of requiring some
creativity in designing φ, the potential method is an extremely useful tool for simplifying these
calculations.

2 Algorithms and SSM on General Graphs
So far, we have shown that if λ < λc(∆), the strong spatial mixing holds for the hardcore Gibbs
measure on arbitrary trees of maximum degree ∆. We now extend this to all graphs of maximum
degree ∆, thus establishing that trees, and in particular the infinite d-regular trees, are the worst
case. This reduction from general graphs to trees is the main innovation of [Wei06]. Our exposition
will differ slightly from that of Weitz’s paper, and perhaps is more similar to [LY13]; see Section 3
for further discussion. We first prove strong spatial mixing on general graphs of maximum degree
∆ when λ < λc(∆). We will then see that the technique also furnishes an efficient approximate
counting algorithm.

Right off the bat, the main obstacle we seem to face when analyzing general graphs is we lose
our ability to use the tree recursion. This is because once we delete the vertex r in consideration,
its neighbors can be remain connected through other paths, and so we don’t get any kind of
independence or factorization. However, it turns out we can still use the tree recursion Fd to
exactly compute the marginals, at the expense of creating an exponentially large tree called the
computation tree. The nodes of the computation tree will represent “(sub)instances” of the problem
of computing the marginal of a vertex. Later on, when we design an efficient algorithm, we will
use correlation decay to say that we can truncate this exponentially large computation tree to
polynomial size. For now, we focus on (inefficient) exact computation.

Definition 1 (Instance). An instance is a pair (G, r), where G = (V,E) is a graph, and r ∈ V is a
distinguished vertex. For such an instance, let pG,r denote the marginal probability PrI∼µG,λ

[r ∈ I]
that r is contained in a random independent set.
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Theorem 2.1 ([Wei06]; see also [LY13]). Let G = (V,E) be an arbitrary graph, and let r ∈ V be
an arbitrary vertex with neighbors u1, . . . , ud ordered arbitrarily. Then

pG,r = Fd(pG1,u1
, . . . , pGd,ud

),

where for all k = 1, . . . , d, the graph Gk is obtained from G by deleting r and u1, . . . , uk−1.

Before we prove this result, let us describe how we will use it. First, observe that Theorem 2.1
immediately yields an (inefficient) recursive algorithm for computing the marginal probability pG,r

exactly: When we wish to compute pG,r for an instance (G, r), we recursively call the algorithm
on each of the d subinstances (G1, u1), . . . , (Gd, ud) to compute pG1,u1 , . . . , pGd,ud

, and then apply
the multivariate function Fd to compute pG,r. The recursion must terminate in a finite number of
iterations. This is simply because each recursive call is on a graph with strictly fewer vertices, and
so we must eventually end up with a graph consisting only of isolated vertices where everything is
trivial to compute.

Pictorially, one should imagine that this recursive algorithm traces out a computation tree
TSAW(G, r), where each node is labeled by an instance (H,u) for some subgraph H of G and some
vertex u ∈ H, and the root is labeled by (G, r). Despite being exponential size in general, this tree
has a number of nice properties:

• Since each subinstance (H,u) in TSAW(G, r) has a distinguished vertex u ∈ V , there is a
natural way to identify a subset of vertices Λ ⊆ V with a subset of subinstances/vertices ΛSAW

in TSAW(G, r) consisting of all subinstances (H,u) such that u ∈ Λ. As a consequence, there
is a natural way to “lift” a pinning τ : Λ→ {in, out} in G to a pinning τSAW : ΛSAW → {in, out}
in TSAW(G, r).

• TSAW(G, r) viewed as a graph is a nice object which has been previously studied extensively
in algebraic combinatorics [God93] and statistical physics [SS05]. In particular, the walks in
this tree started from the root are in one-to-one correspondence with the self-avoiding walks
in G, and so TSAW(G, r) is also called the self-avoiding walk tree of G rooted at r (hence the
subscript SAW).

• TSAW(G, r) also has maximum degree ∆ by virtue of our identification between subinstances
in TSAW(G, r) and vertices in G. For the same reason, if Λ ⊆ V \ {r}, then the shortest path
distance of r from Λ in G is equal to the shortest path distance of r from ΛSAW in TSAW(G, r).
In other words, degrees and distances (to r) are preserved.

Combining this gadget, its properties, and the robust contraction property we established in Propo-
sition 1.1, we will be able to establish the desired SSM. As the name computation tree suggests,
we will also be able to turn TSAW(G, r) into an efficient approximate counter once we have decay
of correlations. Having all of this motivation in mind, we now prove Theorem 2.1. We give a sim-
plified proof, due to Daniel Lee, which is specialized to the hardcore model. A more generalizable
(but notationally more cumbersome) proof is provided in Appendix A.

Proof of Theorem 2.1. Observe that

1 = Pr
I∼µG,λ

[r ∈ I] + Pr
I∼µG,λ

[r /∈ I]

= Pr
I∼µG,λ

[r ∈ I, u1, . . . , ud /∈ I] + Pr
I∼µG,λ

[r /∈ I]

= λ · Pr
I∼µG,λ

[r /∈ I, u1, . . . , ud /∈ I] + Pr
I∼µG,λ

[r /∈ I] (Special to Hardcore Model)

=

(
λ · Pr

I∼µG−r,λ

[u1, . . . , ud /∈ I] + 1

)
· Pr
I∼µG,λ

[r /∈ I].

Rearranging yields

pG,r =
λPrG−r[u1, . . . , ud ← out]

1 + λPrG−r[u1, . . . , ud ← out]
.
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Writing everything using conditional probabilities and again using the fact that pinning a vertex
u← out is equivalent to deleting u from the graph, we obtain

Pr
G−r

[u1, . . . , ud ← out] =
d∏

k=1

Pr
G−r

[uk ← out | u1, . . . , uk−1 ← out]

=

d∏
k=1

(1− pGk,uk
),

from which the claim immediately follows.

With this massive hammer, we now prove the main theorem of Weitz.

Proof of Theorem 0.1. Let G = (V,E) be an arbitrary graph of maximum degree ∆, and suppose
λ ≤ (1 − δ) · λc(∆). We first prove strong spatial mixing. Let r ∈ V , Λ ⊆ V \ {r} and τ, σ :
Λ → {in, out} be arbitrary. Since ∥µτ

r − µσ
r ∥TV =

∣∣pτG,r − pσG,r

∣∣, we wish to show that these two
conditional marginals are within ≲ (1 − δ)dist(r,Λτ,σ) additive error of each other. Consider the
associated computation tree T = TSAW(G, r), which by construction correctly computes these
conditional marginals using the “lifted” pinnings τSAW, σSAW : ΛSAW → {in, out}. By Theorem 2.1,
this computation is obtained by inductively applying Fd, which by Proposition 1.1, is a contraction
globally w.r.t. the metric ψ(p, q) = |φ(p)− φ(q)|. From here, SSM follows by the same argument
employed in the preceding lecture to show that contraction implies SSM on trees.

We now describe an FPTAS. If we order the vertices of G arbitrarily as v1, . . . , vn, then defining
G0 = G and Gi = Gi−1 − vi, we have ZGn(λ) = 1, and so

ZG(λ) =

n∏
i=1

ZGi−1
(λ)

ZGi
(λ)

=

n∏
i=1

1

1− pGi−1,vi

.

Hence, to obtain an (1 ± ϵ)-multiplicative approximation of ZG(λ), it suffices to obtain
(
1± ϵ

n

)
-

multiplicative approximations of each of the marginals 1 − pGi−1,vi . Since pGi−1,vi
≤ λ

1+λ ,3 it
suffices to obtain ± ϵ

(1+λ)n = ±O(ϵ/n) additive approximation to each pGi−1,vi .
Fix any such instance (G, r). We unroll the recursive computation described by TSAW(G, r) to

depth L = O
(
1
δ log(n/ϵ)

)
. Once we hit any subinstance (H,u) at this depth, instead of recursively

calling the algorithm to compute pH,u and passing up an exact value for this marginal, we pass up
an arbitrarily chosen number p̃H,u ∈ [0, 1]. Applying the tree recursion Fd as in Theorem 2.1, this
yields estimates p̃H,u for all subinstances (H,u) which can be reached from (G, r) in ≤ L steps in
TSAW(G, r). Let (H,u) be any such instance, and let (H1, v1), . . . , (Hd, vd) be its child instances.
Then

|φ(p̃H,u)− φ(pH,u)| = |Gd(φ(p̃H1,v1), . . . , φ(p̃Hd,vd)−Gd(φ(pH1,v1), . . . , φ(pHd,vd)|
≤ (1−O(δ)) · max

1≤i≤d
|φ(p̃Hi,vi)− φ(pHi,vi)|

by the same combination of the Mean Value Theorem and Proposition 1.1. Applying this bound
inductively and converting back to total variation in a manner similar to the previous lecture, see
that any error incurred at a depth L instance is reduced by a multiplicative factor of (1−O(δ))L.
Since the error at depth L is bounded, taking the constant in front of L ≤ O

(
1
δ log(n/ϵ)

)
, we

obtain our additive approximation |p̃G,r − pG,r| ≤ O(ϵ/n) as desired.

3 Some Concluding Remarks
Going Beyond the Hardcore Model There is a generalization of Theorem 2.1 to arbitrary
q-spin systems, which can be obtained by making straightforward modifications to the proof given
in Appendix A. This was first done in [GK12] for colorings, and generalized in [LY13]. However,
the resulting computation tree Tcomp(G, r, c) it traces out branches at a factor of dq rather than
d, because each subinstance now also depends on the specific color c ∈ [q] whose marginal pG,r(c)

3We never proved this, but it isn’t hard to see, since the probability that a vertex is in the random independent
set is never more than the same probability but w.r.t. a graph where we have deleted all other vertices.
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you’re trying to compute. This blown up branching number is rather inconvenient, and in many
settings, obstructs the reduction from general graphs to trees (at least when the parameters of the
q-spin system are close to the boundary of the correlation decay regime).

In our proof above, we used specific properties of the hardcore model to reduce the branching
from 2d (since q = 2) to just d. It turns out, a neat extra trick of Weitz [Wei06] allows one to reduce
the branching from 2d to d for general 2-spin systems, without appealing to special properties of
the hardcore model. This is achieved by replacing computation of the marginals directly with
computation of the marginal ratios RG,r =

pG,r

1−pG,r
. One can write down a tree recursion for these

new variables,4 and modify the proof of Theorem 2.1 to obtain a similar computation tree, which
is the original one considered by Weitz.

Our discussion here naturally raises the following question.

Question 1. For every q-spin system A, does there exist a “natural” family of statistics S :
[0, 1]q → Rq

≥0 for which we can write down a computation tree for computing S(pG,r) which
branches at a rate of d instead of dq?

Again, by “branching” we mean the number of recursively produced subinstances. Interestingly,
even though the branching in Tcomp(G, r, c) for computing marginals is dq, each subinstance only
passes up the marginal of a specific color, rather than its entire marginal distribution. So in a
sense, the total “amount of information” passed up is still the same.

On Connections Between WSM, SSM and Algorithms Weitz’s argument shows that weak
spatial mixing (or equivalently, λ < λc(∆)) on the infinite ∆-regular tree is equivalent to strong
spatial mixing on all graphs of maximum degree ∆. This equivalence, however, does not hold in
general. Indeed, it was already observed by Weitz [Wei06] that for the ferromagnetic Ising model
with appropriate (inverse) temperature and (consistent) external fields, weak spatial mixing does
not necessarily imply strong spatial mixing, even though the converse obviously holds; a more
detailed description of the counterexample is provided in the appendix of [SST14]. Furthermore,
it was shown in [LLY13] that for the distribution

µλ,γ(I) ∝ λ|S| · γ#{uv∈E:u,v/∈I},

which corresponds to the spin system with interaction matrix A =

[
0 1
1 γ

]
, one can choose λ

appropriately such that strong spatial mixing holds for the infinite ∆-regular tree, but fails for the
infinite d-regular tree for some d < ∆. This was one motivation for [LLY13] to define “up-to-∆”
uniqueness (as opposed to simply “∆-uniqueness”), meaning that the derivative of the univariate
tree recursion with d children, evaluated at the fixed point, is less than 1 uniformly for all 1 ≤ d ≤
∆− 1. Allan Sly also constructed an example of a multi-spin system such that the corresponding
Gibbs measure on the infinite d-regular tree is unique, but uniqueness fails for some other infinite
d-regular graphs [Sly08].

Sharper Analyses of TSAW(G, r) Note that while every pinning τ on Λ ⊆ V \{r} can be “lifted”
to a pinning τSAW on ΛSAW in T = TSAW(G, r), there do exist pinnings in TSAW(G, r) which cannot
be realized as such lifts. Hence, for more specialized classes of graphs G, e.g. tori, strong spatial
mixing on TSAW(G, r) is strictly stronger than strong spatial mixing on G itself. In other words, the
region of parameters in which correlation decay holds for G can strictly contain the corresponding
region for TSAW(G, r). We refer interested readers to [Bla+19] and references therein for further
discussion of this issue of unfeasible pinnings in TSAW(G, r), which is in general a very challenging
issue to overcome. See also [Res+13] for an analysis which leverages additional combinatorial
properties of TSAW(G, r) when G = Z2 to improve the known SSM threshold for the hardcore
model. We mention the following open problem.

Question 2. What is the correct threshold for weak/strong spatial mixing for the hardcore model
on Z2? How about other lattices?

4For the hardcore model, the multivariate tree recursion for the ratios is given by Fd(R) = λ
∏d

i=1
1

1+Ri
.
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A A More Generalizable Proof of Theorem 2.1
We give a more generic proof which works for an arbitrary q-spin system. This proof is due to
Lu–Yin [LY13] (see also [GK12] for colorings). We proceed as in the usual derivation of the tree
recursion. Given G and r, we create a new graph G̃, where we have split r into d copies r1, . . . , rd,
with ri having unique neighbor ui and fugacity replaced with λ1/d. Then

pG,r =
ZG(r ← in)

ZG(r ← in) + ZG(r ← out)
=

ZG̃(r1, . . . , rd ← in)

ZG̃(r1, . . . , rd ← in) + ZG̃(r1, . . . , rd ← out)
,

where for convenience, we write ZG(r ← in) (resp. ZG(r ← out)) denotes the hardcore partition
function where we only sum over independent sets containing (resp. not containing) r. If G were a
tree, then G̃ would consist of d many trees which are rooted at each r1, . . . , rd and are not connected
to one another. However, since G is some arbitrary graph, we instead employ a telescoping trick.

For each 0 ≤ k ≤ d, define G̃k to be the graph obtained from G̃ by deleting rk+1, . . . , rd and
keeping r1, . . . , rk. Then in G̃0, we have deleted all copies of r, and so G̃0 = G − r. At the other
extreme, we have G̃d = G̃. Then

ZG̃(r1, . . . , rd ← in) = ZG̃0
·

d∏
k=1

ZG̃k
(r1, . . . , rk ← in)

ZG̃k−1
(r1, . . . , rk−1 ← in)

. (1)

One could write a similar expression for the case where “ in” is replaced by “out”. For the hardcore
model, this simplifies dramatically to ZG̃(r1, . . . , rd ← in) = ZG̃0

since pinning all copies r1, . . . , rd
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to “out” is equivalent to deleting all of them. We now interpret each ratio in Eq. (1) as a probability.
Since rk has uk as its unique neighbor, pinning rk ← in is equivalent to imposing uk ← out. In
particular,

ZG̃k
(r1, . . . , rk ← in) = λ1/d · ZG̃k−1

(r1, . . . , rk−1 ← in, uk ← out),

and so

ZG̃k
(r1, . . . , rk ← in)

ZG̃k−1
(r1, . . . , rk−1 ← in)

= λ1/d · (1− pGk,uk
),

where Gk is the graph obtained from G̃k−1 by pinning r1, . . . , rk−1 ← in, or equivalently, deleting
r1, . . . , rk−1, u1, . . . , uk−1. Putting all of these observations together, we have

ZG̃(r1, . . . , rd ← in) = ZG̃0
· λ

d∏
i=1

(1− pGk,uk
)

ZG̃(r1, . . . , rd ← out) = ZG̃0
,

and so the claim follows.
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