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In the previous lecture, we saw the Jerrum–Sinclair FPRAS for the ferromagnetic Ising model.
This algorithmic result is remarkable for a number of reasons, one of which is that it overcomes
a natural phase transition which occurs in the model. For most interesting classes of graphs (e.g.
complete graphs, bounded-degree graphs, tori, etc.) there exists a critical temperature βc such
that

• if β < βc, then Glauber dynamics mixes in polynomial-time (typically O(n log n) steps), and

• if β > βc, then Glauber dynamics requires exp(Ω(n)) steps to mix.1

This algorithmic phase transition stems from an underlying phase transition in the structural
properties of the Gibbs distribution, namely the presence or absence of a precise notion of corre-
lation decay between the spins assigned to distant vertices. In the next two lectures, we will build
up to a beautiful deterministic algorithm directly based on correlation decay for approximate
counting which is very different in nature from Markov chain Monte Carlo, due independently to
Weitz [Wei06] and Bandyopadhyay–Gamarnik [BG08] (with numerous additional follow-up work,
e.g. [Bay+07; GK07; LLY13; LY13], etc.). We will also see sharper complexity phase transition
phenomena in some models (albeit without proofs for the hardness side).

1 Spin Systems and Spatial Mixing
How does one “detect” a phase transition? There are many ways to do this. For the ferromagnetic
Ising model, we can look at the magnetization

∑
v∈V σv. When β < βc, this statistic concentrates

around 0, and when β > βc, its distribution becomes bimodal. But this statistic is a bit tailored to
the specific features of the ferromagnetic Ising model; we’d like a theory which works much more
broadly. Later on in the course, we’ll see a method based on studying where discontinuities in
the free energy logZ “cluster”. Here, we look at the presence or absence of a structural property
of the Gibbs distribution known as correlation decay. To state it, we first define a large class of
probability measures for which this notion will be useful.

Definition 1 (q-Spin System). Let q ∈ N be an integer satisfying q ≥ 2. A q-spin system is
specified by a graph G = (V,E), a nonnegative symmetric interaction matrix A ∈ Rq×q

≥0 , and a

nonnegative vector of external fields λ ∈ RV×[q]
≥0 . These data give rise to a Gibbs distribution

µ = µG,A,λ on [q]V given by

µ(σ) ∝
∏

uv∈E
Aσ(u),σ(v)

∏
v∈V

λv,σ(v), ∀σ : V → [q],

with corresponding partition function

Z = ZG,A(λ)
def
=

∑
σ:V→[q]

∏
uv∈E

Aσ(u),σ(v)

∏
v∈V

λv,σ(v).

The elements of [q] are often called spins or colors. Often when q = 2, we will instead take the
space of spins to be either {0, 1} or {±1} depending on context.

1We already saw an example in the first problem set, namely the Curie–Weiss model where G = Kn.
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Spin systems are sometimes also known as Markov random fields, and are a special class of
probabilistic graphical models [KF09]. Even though the “description” of such a system is very
compact (since we only need to specify G, A and λ), the resulting Gibbs distribution is extremely
complex, and displays a rich set of behaviors. Their study follows one of the central themes of
statistical mechanics, where we study “macroscopic” (or “global”) properties of large-scale systems
given only the “microscopic” (or “local”) interactions between nearby components.

Here are a few common examples of spin systems arising in statistical physics, combinatorics,
theoretical computer science, etc.

• Suppose q = 2 and A =

[
eβ 1
1 eβ

]
where β ≥ 0. Then this 2-spin system exactly recovers

the ferromagnetic Ising model.2 A natural generalization to larger q ≥ 2, where A = (eβ −
1) · I + 1q1

⊤
q gives rise to the ferromagnetic Potts model.

• Suppose q = 2, A =

[
0 1
1 1

]
, and λ = (λ1V ,1V ) for some λ ∈ R≥0. Then we can view the

assignments σ : V → [q] as indicators of subsets of vertices. Furthermore, µ is supported on
independent sets of G, i.e. subsets I ⊆ V such that no pair of vertices in I are connected
by an edge. For such sets of vertices, we have µ(I) ∝ λ|I|. This is called the hardcore (gas)
model.3

• Suppose A = 1q1
⊤
q − I and λ = 1. Then µ is uniform over the (proper) q-colorings of G, i.e.

assignments χ : V → [q] such that χ(u) ̸= χ(v) for all uv ∈ E.4

Given such a Gibbs measure, we can talk about its conditional distributions. Some natural
events to condition on are, for instance, that a given subset of vertices have certain prescribed
assignments. This is known as pinning.

Definition 2 (Pinning). A pinning is a partial assignment τ : Λ → [q] where Λ ⊆ V is a subset
of vertices. Given such a pinning, we write µτ for the induced conditional (Gibbs) distribution,
given by

µτ (σ) ∝

{
µ(σ), if σ(v) = τ(v),∀v ∈ Λ

0, otherwise
.

We can also “restrict attention” for a subset of vertices by marginalizing out all other vertices.

Definition 3 (Marginal Distribution). Let A ⊆ V be a subset of vertices. We write µA for the
induced marginal distribution over partial assignments η : A→ [q] given by

µA(η) =
∑

σ:V→[q]
σ|A=η

µ(σ).

Note we can combine both notations and look at the marginal distribution µτ
A of A ⊆ V

conditioned on a pinning of some other vertices Λ ⊆ V \A.
An appealing property of graphical models is that they satisfy the (global) Markov property (or

conditional independence property).

Fact 1.1. Let A,λ be the parameters of a q-spin system on a graph G = (V,E). Then for every
partition A⊔S⊔B of V such that every path from a vertex in A to a vertex in B must pass through
a vertex in S and every pinning τ : S → [q], the conditional measure µτ factorizes as µτ

A ⊗ µτ
B.5

With the formalism of spin systems in hand, we can now define what exponential decay of
correlations means.

2One can also view this combinatorially as a weighted distribution over cuts in the graph.
3This is a discretization of the original hard spheres model, where gas particles are viewed as solid spheres in R3

satisfying the constraint that no pair of gas particles can intersect.
4In statistical physics lingo, this is the Gibbs distribution of the zero-temperature antiferromagnetic q-state Potts

model.
5Such a set S is called a separator between A and B.
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Definition 4 (Spatial Mixing). We say µ exhibits Weak Spatial Mixing (WSM) if there exist
constants C > 0 and 0 < δ < 1 such that for every r ∈ V , every boundary set of vertices
Λ ⊆ V \ {r}, and every pair of pinnings τ, σ : Λ→ [q],

∥µτ
r − µσ

r ∥TV ≤ C · (1− δ)
dist(r,Λ). (1)

Similarly, we say µ exhibits Strong Spatial Mixing (SSM) if we can upgrade Eq. (1) to

∥µτ
r − µσ

r ∥TV ≤ C · (1− δ)
dist(r,Λτ,σ), (2)

where Λτ,σ = {v ∈ Λ : τ(v) ̸= σ(v)} denotes the set of vertices of disagreement between τ, σ.

Another way to think of strong spatial mixing is that we demand weak spatial mixing holds
for all conditional distribution of µ, not only µ itself. While there are many other notions of phase
transition and correlation decay, for the purposes of this and the next lecture, correlation decay
will mean one of weak/strong spatial mixing, and phase transition means a sharp threshold for
some natural underlying parameter which delineates whether or not this form of correlation decay
holds.

Finally, we mention that SSM remains open for many models of interest.

Conjecture 1. The uniform distribution over proper q-colorings of an arbitrary graph of maximum
degree ∆ exhibits SSM as long as q ≥ ∆+ 1.

Surprisingly, this wasn’t even known for bounded-degree trees until recently [Che+23].

2 The Hardcore Model
We now specialize our discussion to the hardcore model, where we will see a sharp complexity-
theoretic phase transition. Recall that in the hardcore model, we have a graph G = (V,E) and a
parameter6 λ ≥ 0; we typically view λ as a constant independent of n. The corresponding Gibbs
distribution µ = µG,λ is a distribution over independent sets I ⊆ V of G given by

µ(I) ∝ λ|I|,

with partition function

ZG(λ)
def
=

∑
I⊆V independent

λ|I|.

In the combinatorics community, the latter is often called the (univariate) independence polynomial
of G. Throughout, we slightly abuse notation, and identify v with the event that v is contained in
a random independent set drawn from the Gibbs distribution. At the same time, we write v for
the complementary event.

Why are we considering independent sets and not some other model? When we discuss the
cluster expansion, we’ll see that this model is in some sense “universal” in that many other models
can be “embedded” as hardcore models. Another is a matter of convenience. Most of our discussion
will extend well beyond the hardcore model, but independent sets possess a nice self-reducibility
feature.

Fact 2.1. For any vertex v ∈ V , the measure µv
G,λ obtained by conditioning on v being in a

random draw I ∼ µG,λ is simply µG−N [v],λ, where N [v] = {v}∪{u ∈ V : u ∼ v} denotes the closed
neighborhood of v. Similarly, the conditional measure µv

G,λ is simply µG−v,λ.

So, our goal is now to (approximately) sample a random independent set according to the
Gibbs distribution µ = µG,λ. Intuitively, this should be easy if λ is small, since the distribution
concentrates mass on small independent sets like the empty set. On the other hand, if λ large, then
the distribution concentrates mass on the maximum independent sets in G, which are in general
hard to find; in fact, there are dramatic hardness of approximation results for finding maximum
independent sets [Hås99; Hås01].

6This is the analog of the “inverse temperature” from the ferromagnetic Ising model. It is sometimes called the
fugacity.
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It turns out, there is a sharp threshold separating these two regimes. Throughout, let ∆ ≥ 1
denote the maximum degree of the graph G = (V,E); we also think of ∆ as an absolute constant
independent of n. Define

λc(∆)
def
=

(∆− 1)∆−1

(∆− 2)∆
≈ e

∆− 1
.

This is the uniqueness threshold for the hardcore model on the infinite ∆-regular tree T∆ [Kel85];
see Remark 2 for further discussion of this terminology. It delineates the presence or absence of
correlation decay on T∆; we’ll spell out this connection in further detail in a moment. For now, we
state more precisely the sharp complexity-theoretic phase transition in the hardcore model. This
is based on the following two seminal results in the field.

Theorem 2.2 (Weitz [Wei06]). If λ < λc(∆), then SSM holds for the hardcore model on any
graph of maximum degree ∆. Furthermore, there exists an FPTAS for estimating ZG(λ) for every
graph G = (V,E) of maximum degree ∆ and every λ < λc(∆). If λ ≤ (1− δ)λc(∆) for a constant
0 < δ < 1, the running time of this algorithm scales as (n/ϵ)O(

1
δ log∆), where 0 < ϵ < 1 is the

estimation error.

Theorem 2.3 (Sly [Sly10]; see also [SS14; Gal+14; GŠV15; GŠV16]). Suppose there exists λ >
λc(∆) and an FPRAS for estimating ZG(λ) on all graphs of maximum degree ∆. Then NP = RP.

Here, RP of course just means randomized polynomial-time. Both of these results were break-
throughs in the field of approximate counting and sampling. Unlike the ferromagnetic Ising model,
where above criticality, we could only rule out fast mixing of Glauber dynamics, Theorem 2.3
rules out the existence of any efficient algorithm (assuming NP ̸= RP). Theorem 2.2 is remarkable
because its proof shows that strong spatial mixing on the infinite ∆-regular tree implies strong
spatial mixing for every graph of maximum degree ∆. Thus, in a very precise sense, the infinite
∆-regular tree is the “worst case”. Theorem 2.2 is also interesting because the algorithm is fully
deterministic.

Remark 1. While the algorithm in Theorem 2.2 is deterministic, its running time isn’t so favorable,
and one can ask if faster algorithms exist. Later in the course, we’ll use the proof techniques for
Theorem 2.2 to establish O(n log n) mixing of Glauber dynamics for all λ < λc(∆).

The goal of this and the next lecture is to prove Theorem 2.2. Unfortunately, we won’t have
time to prove Theorem 2.3. We conclude this section with an open problem.

Question 1. Does there exist an FPRAS for estimating ZG(λ) at λ = λc(∆) on any graph G =
(V,E) of maximum degree ∆?

The original paper of Weitz establishes that the correlations decay polynomially fast, but it is
unclear how to convert this to an algorithm. Nonetheless, this still establishes uniqueness of the
Gibbs measure on the infinite ∆-regular tree even when λ = λc(∆).

3 Correlation Decay on Trees
To build up towards Theorem 2.2, let us start by studying correlation decay on finite trees of
maximum degree ∆. We will first prove the following very special case of the strong spatial mixing
claim in Theorem 2.2.

Theorem 3.1. Suppose λ < λc(∆). Then SSM holds for the hardcore Gibbs measure on all trees
of maximum degree ∆.

Even though as stated this result only holds for trees, this will turn out to be the “worst case”
out of all graphs with maximum degree ∆. In particular, even if we don’t use Theorem 3.1 directly
towards proving Theorem 2.2, we will use the ingredients in the proof of Theorem 3.1.

3.1 The Tree Recursion
To prove Theorem 3.1, let us arbitrarily fix some root vertex r ∈ V in the tree T = (V,E). We wish
to show that the marginal distribution of r is stable w.r.t. small perturbations in the boundary
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condition imposed on far away vertices. The key tool that will give us a handle on this marginal
distribution is the tree recursion.

For an arbitrary tree T rooted at a vertex r, write pr for the probability that r is contained in
I ∼ µT,λ. If u is any other vertex in T , we write Tu for the unique subtree of T rooted at u which
is “below” u. By a slight abuse of notation, we write pu for the probability that u is contained in
I ∼ µTu,λ; note that this distribution is w.r.t. the subtree Tu, not the full tree T .

Lemma 3.2. Let T be an arbitrary tree rooted at r, and suppose r has children u1, . . . , ud with
corresponding rooted subtrees T1, . . . , Td. Then writing pi = pui

,

pr = Fd(p1, . . . , pd)
def
=

λ
∏d

i=1(1− pi)
1 + λ

∏d
i=1(1− pi)

. (3)

In the univariate case where p1, . . . , pd are all equal to some p, we write

fd(p)
def
=

λ(1− p)d

1 + λ(1− p)d

for the univariate recursion.
Note that this recursion immediately yields an efficient dynamic programming algorithm for

exactly computing the marginals, as well as the partition function, for the hardcore model on any
tree. A more general recursion which works for any spin system is stated in Lemma A.1 and
proved in Appendix A. This recursion can be derived a number of ways, but the key property of
spin systems which enables such recursions is conditional independence (see Fact 1.1).

Since ∥µτ
r − µσ

r ∥TV = |pτr − pσr |, the high-level strategy to proving Theorem 3.1 given Eq. (3)
is to show that for an appropriate measure of “distance” ψ on R≥0 × R≥0, we have that for all
p, q ∈ [0, 1]d≥0,

ψ(Fd(p), Fd(q)) ≤ (1− δ) · max
1≤i≤d

ψ(pi, qi).

If this contraction property holds, then by translating between ψ(·, ·) and total variation distance
(with whatever losses incurred going into the constant C), we can obtain Theorem 3.1. This is
formalized in Lemma 3.4 below. This proof strategy follows a number of follow-up works (see e.g.
[Res+13; LLY13]) to Weitz’s original paper, which had a different style of argument. However,
before we prove Theorem 3.1 in full, we first look at the univariate case and how the threshold
λc(∆) is derived.

3.2 The Univariate Case: Where λc(∆) Comes From
Before we prove contraction in full, let us consider the special case of (∆ − 1)-ary trees of depth-
L, with L tending to +∞. We use T̂∆,L to denote this tree, with distinguished root vertex r.
Certainly, as a prerequisite to Theorem 3.1, it must be that when the boundary Λ consists of all
leaves of T̂∆,L and τ ≡ 0, σ ≡ 1 on Λ, we have

|pτr − pσr | ≲ (1− δ)L.

Because of the symmetry of T̂∆,L, this weaker claim is equivalent to showing that for all L ∈ N,∣∣f◦L∆−1(0)− f◦L∆−1(1)∣∣ ≲ (1− δ)L. (4)

Since these two τ, σ are the “extremal” cases, i.e. they minimize/maximize the marginal of the
root respectively (simply by monotonicity of f∆−1), Eq. (4) says that regardless of the choice of
the initializing marginal probability p, the sequence {f◦L∆−1(p)}∞L=0 always converges to the same
fixed point of f∆−1(·). The threshold λc(∆) precisely delineates between when this convergence
happens and when it fails.

Proposition 3.3 ([Kel85]; see also [Bar16]). For every λ and every ∆, the univariate function
f∆−1 has a unique fixed point p̂ = p̂(λ,∆). Furthermore, the following hold:

• Suppose λ ≤ λc(∆). Then for every p ∈ [0, 1], the sequence {f◦L∆−1(p)}∞L=0 converges to p̂. If
λ ≤ (1− δ) · λc(∆), then

∣∣f ′∆−1(p̂)∣∣ ≤ 1−O(δ) and∣∣p̂− f◦L∆−1(p)∣∣ ≲ (1−O(δ))L, ∀L ∈ N.
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• Suppose λ > λc(∆). Then there exist two additional fixed points p̂odd < p̂ < p̂even of f◦2∆−1
such that

lim
L→∞

f◦2L∆−1(p) =


p̂odd, if p < p̂

p̂even, if p > p̂

p̂, if p = p̂

.

Proof Sketch. For simplicity, we’ll only prove existence of the requisite fixed points and establish
the local behavior of fd around its unique fixed point; we refer the reader to [Bar16] for a full proof.
For convenience, write d = ∆ − 1. That fd has a unique fixed point p̂ = p̂(λ, d) for all λ and all
d follows from the fact that fd is monotone decreasing, with fd(0) =

λ
1+λ > 0 and fd(1) = 0 < 1.

Furthermore, if p < p̂, then fd(p) > p̂, and vice versa. Since fd is increasing in λ, it also follows
that p̂ is continuous and increasing as a function of λ.

We now establish that λ ≤ λc(d + 1) if and only if locally around this fixed point p̂, we have
contraction, i.e. |f ′d(p̂)| ≤ 1. Furthermore, if λ ≤ (1 − δ) · λc(d + 1), then we actually get a gap
|f ′d(p̂)| ≤ 1−O(δ). A calculation reveals that

f ′d(p) = −d ·
1− fd(p)
1− p

· fd(p), ∀p ∈ [0, 1],

and so at the fixed point p̂, we have |f ′d(p)| = d · p̂. We claim that p̂ ≤ 1
d if and only if λ ≤ λc(d+1),

and furthermore, if λ ≤ (1−δ)·λc(d+1), then p̂ ≤ (1−O(δ))· 1d . To see this, observe that p̂ = fd(p̂)

is equivalent to p̂ = λ(1− p̂)d+1. If λ ≤ λc(d+ 1) = dd

(d−1)d and p̂ > 1/d, then

λ(1− p̂)d+1 < λc(d+ 1) ·
(
1− 1

d

)d+1

=
1

d
< p̂,

contradicting p̂ being a fixed point. It follows that λ ≤ λc(d + 1) forces p̂ ≤ 1
d , and by making

this argument quantitative, we get that λ ≤ λc(d+ 1) forces p̂ ≤ (1−O(δ)) · 1d . A nearly-identical
argument shows that λ > λc(d+ 1) forces p̂ > 1/d.

At this juncture, we already see that if λ ≤ (1 − δ) · λc(∆), then at least for p close to p̂, the
sequence {f◦Ld (p)}∞L=0 converges to p̂. This is because |f ′d(p̂)| ≤ 1−O(δ) implies by continuity that
|f ′d(q)| ≤ 1−O(δ) for all q in a small neighborhood of p̂, whence for p in this small neighborhood
of p̂, we have |p̂− fd(p)| ≤ |f ′d(q)| · |p̂− p| ≤ (1−O(δ)) · |p̂− p| by the Mean Value Theorem (where
q is some convex combination of p and p̂).

Conversely, if λ > λc(∆), then the fixed point p̂ is repulsive, and so for small ϵ > 0, we have
f◦2d (p) > p for p ∈ (p̂, p̂+ϵ) and f◦2d (p) < p for p ∈ (p̂−ϵ, p̂). Since f◦2d (p̂) = p̂, f◦2d (0) = fd

(
λ

1+λ

)
>

0 and f◦2d (1) = fd(0) = λ
1+λ < 1, it follows by continuity and the Intermediate Value Theorem

that f◦2d must have (at least) two other fixed points. These fixed points must come in pairs, in the
sense that if q̂ < p̂ is a fixed point of f◦2d then so is fd(q̂) > p̂. That there are exactly two other
fixed points follows by showing that there exists p∗ such that f◦2d is convex in the interval [0, p∗]
and concave in the interval [p∗, 1]. For the details of the remainder of the argument, we refer to
[Bar16].

What Proposition 3.3 says is that if λ > λc(∆), then macroscopic oscillations start appearing
in the marginals of the vertices of T̂∆,L which persist as one goes up the tree. Each application of
f∆−1 just bounces back and forth between p̂odd and p̂even. On the other hand, when λ ≤ λc(∆), all
marginals contract towards the unique fixed point p̂. This is analogous to how we need aperiodicity
when studying mixing times of Markov chains.

The term “mixing” is also analogous in meaning. Here, spatial mixing refers to decorrelation
(w.r.t. space) of the marginal of r from other vertices which are far away. In the setting of Markov
chains, “mixing” (or “temporal mixing”) refers to decorrelation (w.r.t. time) of the current state
Xt from, say, the initial one X0. Later in the course, we will study the relationship between these
two notions of mixing. In particular, we will prove that for the hardcore model with λ < λc(∆),
Glauber dynamics mixes in O(n log n) steps.
Remark 2 (The Uniqueness Problem for Infinite-Volume Gibbs Measure). A mathematical problem
of interest is rigorously defining a Gibbs distribution on an infinite graph like the lattice Zd or the
∆-regular tree T∆. One natural approach would be to take appropriate “limits”, e.g. for T∆, we
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could look at “the limit” of the distributions µT̂∆,L
for (∆− 1)-ary trees of increasing larger depth

L. Since T̂∆,L “converges” to T∆ as L→∞, one might hope that µT̂∆,L
also “converges” to some

unique probability measure.
What Proposition 3.3 essentially says is that this is possible if λ ≤ λc(∆). On the other hand,

when λ > λc(∆), the parity of the depth L actually matters. In particular, the distributions
{µT̂∆,2L

}∞L=0 must have a different limit compared to the distributions {µT̂∆,2L+1
}∞L=0, simply by

virtue of the discrepancy between marginals they induce at the root vertex r. For this reason,
the threshold λc(∆) is sometimes called the uniqueness threshold for the hardcore model on the
infinite ∆-regular tree, and the interval [0, λc(∆)] is sometimes called the uniqueness regime.

3.3 Correlation Decay via Contraction
It turns out a good choice for the distance is given by composition with a suitable potential function.
More specifically, we take ψ(p, q) def

= |φ(p)− φ(q)|, where φ : [0, 1] → R≥0 ∪ {+∞} is a smooth
strictly monotone function; note that strict monotonicity guarantees that φ admits a smooth and
strictly monotone inverse map φ−1 : R≥0 ∪ {∞} → [0, 1]. For the present discussion, we won’t
instantiate φ. We typically write Φ

def
= φ′.

Since our goal is now to study |φ(pτr )− φ(pσr )|, it is natural to consider the induced tree recursion
for the new variables m = φ(p) given by

Gd(m1, . . . ,md)
def
= φ

(
Fd

(
φ−1(m1), . . . , φ

−1(md)
))
.

We also write gd
def
= φ ◦ fd ◦ φ−1 for the analogous univariate recursion.

Lemma 3.4. Assume φ : [0, 1]→ R≥0 ∪ {+∞} is a smooth strictly monotone potential function.
For convenience, further assume there exists some positive universal constants A,B > 0 such that
|φ(p)| ≤ A and |φ′(p)| ≥ B for all p ∈ [0, 1]. Suppose for some constant 0 < δ < 1, we have that
∥∇Gd(m)∥1 ≤ 1 − O(δ) for every m ∈ Rd

≥0 and every 1 ≤ d ≤ ∆ − 1. Then the conclusion of
Theorem 3.1 holds.

This is essentially a consequence of the Mean Value Theorem, which allows one to translate
a bound on the gradient norm to direct contraction of Gd, plus a simple inductive argument.
Lemma 3.4 reduces the task to finding a good φ satisfying ∥∇Gd(m)∥1 ≤ 1 − O(δ). We will see
one such choice in the next lecture, which will then complete the proof of Theorem 3.1.

Remark 3. Typically, it is enough to impose the boundedness assumptions on φ and Φ to only
hold in some interval [a, b] ⊆ [0, 1] for constants 0 < a, b < 1, so long as, say, a constant number
of applications of Fd to any collection of marginal vectors lands in [a, b]. For instance, for the
hardcore model, by monotonicity of Fd, we get that

Fd(p) ≤ Fd(0) =
λ

1 + λ
, ∀p ∈ [0, 1]d.

Similarly,

Fd(Fd(p1), . . . , Fd(pd)) ≥ Fd

(
λ

1 + λ
· 1

)
=

λ

λ+ (1 + λ)d
, ∀p1, . . . ,pd ∈ [0, 1]d.

Such boundedness requirements are very easy to satisfy; the main challenge is ensuring the gradient
norm bound.

Proof of Lemma 3.4. We first prove that |φ(pτr )− φ(pσr )| ≤ (1 − δ)dist(r,Λτ,σ) · A. We will then
convert this back to total variation distance at some loss in the constant. We write m = φ(p) for
the new variables after applying the transformation φ. Observe that by the Mean Value Theorem,
if m,m′ ∈ Rd

≥0 are arbitrary, then

|Gd(m)−Gd(m
′)| = |⟨∇Gd(m

′′),m−m′⟩| (Mean Value Theorem)
≤ ∥∇Gd(m

′′)∥1 · ∥m−m′∥∞ (Hölder’s Inequality)
≤ (1−O(δ)) · max

1≤i≤d
|mi −m′i| , (Gradient Assumption)
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where m′′ is some convex combination of m,m′. Applying this inequality inductively and writing
Lr(ℓ) for the set of vertices at distance exactly ℓ from the root r, we see that

|φ(pτr )− φ(pσr )| ≤ (1−O(δ)) · max
u∈Lr(1)

|φ(pτu)− φ(pσu)|

≤ · · · (Induction)

≤ (1− δ)dist(r,Λτ,σ) · max
u∈Lr(dist(r,Λτ,σ))

|φ(pτu)− φ(pσu)|

≤ (1− δ)dist(r,Λτ,σ) ·A. (φ is A-bounded)

Note that during this induction, we could have hit a vertex in Λ \ Λτ,σ, but this doesn’t matter
since for any such vertex u, we automatically have |φ(pτu)− φ(pσu)| = 0. To complete the proof, we
just convert back to total variation distance. We have

∥µτ
r − µσ

r ∥TV = |pτr − pσr |
=

∣∣(φ−1)′(φ(q))∣∣ · |φ(pτr )− φ(pσr )| (Mean Value Theorem)

≤ 1

B
·A · (1− δ)dist(r,Λτ,σ). (Boundedness Assumptions)

Setting C = A/B completes the proof.
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A Unfinished Proofs
Lemma A.1 (General Tree Recursion). Let A ∈ Rq×q

≥ ,λ ∈ Rq
≥0 be the parameters of a q-spin

system. Let T be a tree, and let r ∈ T be an arbitrarily chosen root vertex, with children u1, . . . , ud
and corresponding subtrees T1, . . . , Td. Then for every color c ∈ [q],

µT,r(c) =
λc

∏d
i=1

∑
b∈[q]Ab,c · µTi,ui

(b)∑
a∈[q] λa

∏d
i=1

∑
b∈[q]Ab,a · µTi,ui(a)

.

Proof. We use a simple combinatorial argument. Imagine we split r into d distinct vertices
r1, . . . , rd. The resulting graph T̃ now consists of d trees T̃1, . . . , T̃d which are disconnected from
each other, where T̃i is formed by taking Ti and adding a new vertex ri with a single edge con-
necting ri to ui; in particular, ri has degree-1 in T̃i. For each such copy ri, we reset its external
field vector to {λ1/d

c }c∈[q]. Then

µT,r(c) =
ZT (r ← c)∑

a∈[q] ZT (r ← a)
=

ZT̃ (r1, . . . , rd ← c)∑
a∈[q] ZT̃ (r1, . . . , rd ← a)

=

∏d
i=1 ZT̃i

(ri ← c)∑
a∈[q]

∏d
i=1 ZT̃i

(ri ← a)
, (T̃i are disconnected from each other)

where we write ZT (r ← c) for the partition function of the spin system on T restricted to terms
σ : V → [q] satisfying σ(r) = c. Since ri has degree-1 with ui as its unique neighbor,

ZT̃i
(ri ← a) = λ

1/d
a

∑
b∈[q]

Ab,a · ZTi
(ui ← b), ∀a ∈ [q],

and so

µT,r(c) =
λc

∏d
i=1

∑
b∈[q]Ab,c · ZTi

(ui ← b)∑
a∈[q] λa

∏d
i=1

∑
b∈[q]Ab,a · ZTi

(ui ← a)
.

Since µTi,ui
(b) =

ZTi
(ui←b)

ZTi
by definition, dividing all terms by ZTi

in both the numerator and
denominator yields the claim.
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