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In this lecture, we use the canonical paths method from the previous lecture to build an FPRAS
for the ferromagnetic Ising partition function.

1 The Ferromagnetic Ising Model
Let G = (V,E) be a finite undirected graph, and let A be its adjacency matrix. For a nonnegative
parameter β ≥ 0 and a vector h ∈ R, define the Gibbs measure of the ferromagnetic Ising model
on G with external field h as the following probability distribution over {±1}V :

µ(σ) ∝ exp

(
β

2
σ⊤Aσ + h · ⟨σ,1⟩

)
, ∀σ ∈ {±1}V . (1)

Its associated partition function is given by

ZG(β, h)
def
=

∑
σ∈{±1}V

exp

(
β

2
σ⊤Aσ + h · ⟨σ,1⟩

)
.

This is one of the most famous and well-studied models in statistical mechanics dating back to the
early 1900s [Len20; Isi25]. It was developed to mathematically model phase transition behavior in
magnets, where we imagine a block of magnetic material as consisting of particles which themselves
behave like tiny magnets.1 As we can see from Eq. (1), particles (represented as vertices) interact
with their nearest neighbors in a way which encourages alignment of their ±1 spins. The parameter
β ≥ 0 captures the inverse temperature; small β corresponds to high temperature, which intuitively
means weaker interactions since the particles “fluctuate more”. The vector h ∈ RV simulates the
effect of external forces and effects.

Our goal is to algorithmically sample from this Gibbs distribution. Intuitively, if the temper-
ature is high, then the interactions are weak and we expect µ to behave in some sense like the
uniform measure over {±1}V . Therefore, in this regime of small β, we expect local Markov chains
like Glauber dynamics to mix rapidly. On the other hand, if β is large, then the distribution will
concentrate mass around the two diametrically opposite maximizers 1,−1 ∈ {±1}V of the Hamil-
tonian H(σ) = β

2σ
⊤Aσ. Since these maximizers differ in all coordinates, we expect that Glauber

dynamics will mix slowly in the regime of large β.
For most interesting families of graphs, this is the case. Furthermore, there typically is a precise

critical threshold βc (depending on the family of graphs under consideration) such that Glauber
mixes rapidly if β < βc, and mixes slowly if β > βc. In this lecture, we show that despite this
algorithmic phase transition, there is an FPRAS nonetheless.

Theorem 1.1 (Jerrum–Sinclair [JS93]). There is an FPRAS for the problem of estimating ZG(β, h),
for any input graph G and any β, h ≥ 0.

Remark 1. This result extends much more generally to any nonnegative matrix A. We can further
replace h · 1 with any vector h ∈ RV as long as all entries have the same sign. Such external fields
are sometimes called consistent, since they bias all entries of σ ∼ µ towards the same spin in {±1}.

1This was motivated by a real experiment performed by Pierre Curie, where a magnetic block of iron was
gradually heated. It was observed that at some critical temperature, now called the Curie Temperature, the block
of material spontaneously lost its magnetization.
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1.1 The Even Subgraphs Representation
The first step in the proof of Theorem 1.1 is to construct a new distribution on a new state space
which has the same partition function as ZG(β) (up to some easy-to-compute factor). For F ⊆ E,
let odd(F ) = {v ∈ V : degF (v) odd} denote the set of odd-degree vertices in the subgraph (V, F );
note the number |odd(F )| of odd-degree vertices must always be even. If A,B ⊆ V are two sets of
vertices, we write A⊕B for their symmetric difference2; we use the same notation if A,B ⊆ E are
two subsets of edges.

Let 0 ≤ ρ ≤ 1 and λ ≥ 0 be parameters, and define a probability distribution µ̂ρ,λ over subsets
of edges by

µ̂ρ,λ(F ) ∝ ρ|odd(F )|λ|F |, ∀F ⊆ E,

which has partition function

ẐG(ρ, λ)
def
=
∑
F⊆E

ρ|odd(F )|λ|F |.

In the physics literature, this is sometimes called the high-temperature expansion for the ferromag-
netic Ising model.3 We will call this the even subgraphs model, since the distribution penalizes the
presence of odd-degree vertices. The following tells us that to compute the ferromagnetic Ising
partition function, it suffices to compute the partition function for the even subgraphs model.

Proposition 1.2. For every β, h ≥ 0, we have the identity ZG(β, h) = C(β, h) · ẐG(ρ, λ), where
ρ = tanh(h), λ = tanh(β) and C(β, h)

def
= 2|V | cosh(h)|V | cosh(β)|E|.

Remark 2. This transformation is completely general, and works for arbitrary A ∈ Rn×n. The
only catch is that when negative entries are allowed in A, then ẐG may contain negative terms, and
we no longer get a probability distribution µ̂ρ,λ. Nonetheless, it is still a useful transformation;
as an example for going beyond the ferromagnetic case, see the following paper studying the
Sherrington–Kirkpatrick spin glass model [ALR87].

A proof is provided in Appendix A. The key trick is writing ex as cosh(x)·(1+tanh(x)), allowing
one to “average out” the identities of the spins {±1} in a nice way which “cancels out” many terms.
When we discuss the Lee–Yang Theorem, we’ll see that this trick ex = cosh(x) · (1 + tanh(x)) has
a nice complex-analytic interpretation using Möbius transformations (after rewriting ZG(β, h) as
the cut polynomial of G). There is also an interpretation of this transformation as a special case of
cluster expansion, another technique we’ll see later in the course. Unfortunately, the proof doesn’t
provide a lot of intuition behind the “meaning” of the subgraphs F ⊆ E.

For the rest of the lecture, we focus on estimating ẐG(ρ, λ) for every 0 ≤ ρ, λ ≤ 1. Note that
even if we have a sampler for µ̂ρ,λ, it is not clear that we immediately get an approximate counter
for ẐG(ρ, λ). This is because, at least as it is currently defined, the problem of estimating ẐG(ρ, λ)
isn’t self-reducible in a natural way similar to matchings. For instance, if we condition an edge e
to be in the sample F ∼ µ̂ρ,λ, then in the resulting conditional distribution for the graph G − e,
we need to replace odd(F ) with odd(F ∪ {e}). We could relax the problem definition to include
such distributions, but this will make the proofs more cumbersome than necessary. Instead, we
use a different annealing scheme to show that approximate sampling from µ̂ρ,λ for all 0 ≤ ρ, λ ≤ 1

implies approximate counting for ẐG(ρ, λ) for all 0 ≤ ρ, λ ≤ 1.

Proposition 1.3. Suppose there exists a FPAS for approximately sampling from µ̂ρ,λ for every
0 ≤ ρ, λ ≤ 1. Then there exists an FPRAS for estimating ẐG(ρ, λ) for all 0 ≤ ρ, λ ≤ 1.

Combined with Proposition 1.2, this shows that to prove Theorem 1.1, it suffices to design
an FPAS for approximately sampling from µ̂ρ,λ. The proof is provided in Appendix A. Given
Proposition 1.3, our goal is now to construct an approximate sampler for the distribution µ̂ρ,λ.
The core algorithm is Glauber dynamics P, which for µ̂ρ,λ, evolves as follows: Suppose at time t,
we have a set of edges Ft ⊆ E. To transition to Ft+1 ⊆ E, we

1. select a uniformly random edge e ∈ E,
2The ⊕ notation comes from identifying each set A with its corresponding {0, 1}-indicator function, viewed as a

vector in FV
2 .

3There are many other useful expansions for the ferromagnetic Ising model (see e.g. [Dum17]).
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2. set Ft+1 = Ft + e with probability

ρ|odd(Ft+e)|λ|Ft+e|

ρ|odd(Ft−e)|λ|Ft−e| + ρ|odd(Ft+e)|λ|Ft+e| ,

and set Ft+1 = Ft − e otherwise.

Theorem 1.4. For every graph G = (V,E) with n vertices and m edges, and every 0 < ρ, λ ≤ 1,
Glauber dynamics has spectral gap γ ≥ ρ6/m2 and hence, mixing time4

Tmix(ϵ) ≤ O

(
m2

ρ6
(m+ log(1/ϵ))

)
.

Corollary 1.5. There exists an FPAS for sampling from µ̂ρ,λ for every graph G = (V,E) and
every 0 ≤ ρ, λ ≤ 1.

Since the mixing time has an inverse polynomial dependence on ρ > 0, Theorem 1.4 doesn’t
directly give us a sampler for ρ = 0. Note that this blow-up as ρ → 0 is necessary because of
the case where G is a cycle, which has only two subgraphs (V, F ) with |odd(F )| = 0. To remedy
this, we can take ρ sufficiently small and add an extra rejection sampling trick at the end. The
details are provided in Appendix A. In the remainder of the lecture, we prove Theorem 1.4 by
constructing a set of canonical paths and bounding the congestion. Towards this, we introduce
one more technical ingredient which will make life easy.

2 Bounding Congestion via Flow Encodings
The challenge with bounding the congestion maxa→b CP(a → b) is adequately controlling the
quantity

∑
x,y∈Ω:(a,b)∈Px→y

µ(x)µ(y). For instance, if µ is uniform, then CP(a → b) ≤ poly(n)
essentially boils down to controlling the total number of paths

|Px→y| ≤ poly(n) · |Ω| ,

as we saw in the hypercube example from the previous lecture. But in general, the quantity |Ω|
in the right-hand side is exactly the unknown quantity we wish to compute, so somehow we need
to certify this inequality in some “implicit” manner. The following ingenious technique of Jerrum–
Sinclair gives such a certificate. An important feature of this certificate is that we can verify it by
making “local checks” to it; this will be more clear when we discuss a concrete application to even
subgraphs.

Definition 1 (Flow Encoding). Let P = {Px→y}x,y∈Ω be a collection of canonical paths. For each
transition a → b w.r.t. the Markov chain P, write CPa,b = {(x, y) ∈ Ω2 : Px→y ∋ (a → b)}.5 A
flow encoding for P is a collection of injective maps η = {ηa→b : CPa,b → Ω}a,b.
Lemma 2.1. Let η = {ηa→b : CPa,b → Ω}a,b be a flow encoding for a collection of canonical paths
P = {Px→y}x,y∈Ω such that for some α > 0, we have the inequality

µ(x)µ(y) ≤ α · µ(a)µ(ηa→b(x, y))P(a → b) (2)

uniformly for all transitions a → b in P and all (x, y) ∈ CPa→b. Then we have the congestion
bound

max
a→b

CP(a → b) ≤ α.

Proof. Fix an arbitrary transition a → b. Then

CP(a → b) =
1

µ(a)P(a → b)

∑
x,y∈Ω:(a,b)∈Px→y

µ(x)µ(y) (Definition of congestion)

≤ α
∑

(x,y)∈CPa→b

µ(ηa→b(x, y)) (Flow encoding)

≤ α. (Injectivity)

4The ρ6 is for convenience and simplicity; with a little more care, the analysis can be sharpened to make this
factor ρ4.

5One can think of CP as being shorthand for “customer–producer” or “canonical paths”.
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Remark 3. One can relax the injectivity requirement, e.g. allowing for additional “side information”,
at some cost in the bound α.

2.1 Canonical Paths for Even Subgraphs
Proof of Theorem 1.4. We construct a collection of canonical paths to certify an upper bound on
the inverse spectral gap. To bound the congestion, we then design a flow encoding and apply
Lemma 2.1. Let I, F ⊆ E be two subgraphs; we wish to define a canonical path PI→F from the
initial edge set I to the final edge set F . We use Glauber moves to flip the status of each edge of
I ⊕ F one at a time, similar to the hypercube example from the previous lecture.

However, to achieve good congestion, the order in which we do this matters: We decompose
I ⊕ F into a pairwise edge-disjoint collection of paths P1, . . . , Pk and cycles C1, . . . , Cℓ, where
2k = |odd(I ⊕ F )|. This is always possible via an inductive argument, since every odd-degree
vertex in I ⊕ F must be connected by a path to some other odd-degree vertex. Note that such
a decomposition is not unique in general. To each Pi, we arbitrarily designate one of the two
ending vertices as the “start” vertex. Similarly, to each cycle Cj , we arbitrarily designate one of
the vertices as the “start” vertex; we also need to specify a neighboring vertex to determine the
“direction” we wish to traverse the cycle. These choices give rise to a fixed ordering of the edges
e1, . . . , et of the edges of I ⊕ F ; going in this order, we traverse from start to finish each path
P1, . . . , Pk one by one, and then traverse each cycle starting with the designated “start” vertex and
walking in the designated direction. This then defines a canonical path PI→F , where we “flip” each
edge ei in order.

Clearly, the lengths of the canonical paths are at most m. We now define a flow encoding to
bound the congestion. For a transition A → B = A⊕ ei and (I, F ) ∈ CPA→B , define

ηA→B(I, F )
def
= I ⊕ F ⊕ (A ∪B).

We prove the following claims.

• Injectivity: We show how to invert ηA→B . Since ηA→B(I, F ) ⊕ (A ∪ B) = I ⊕ F , we
can recover the ordering of the edges e1, . . . , et used to flip from I to F . Furthermore, we
can recover the exact 1 ≤ i ≤ t at which the transition A → B occurred in this flipping
process, since ei = A⊕B. Hence, we can recover I by starting with A and applying flips to
e1, . . . , ei−1; similarly, we can recover F by starting with B and applying flips to ei+1, . . . , et.

• Eq. (2) holds with α = m/ρ6: By reversibility of P, since B = A⊕ ei,

µ(A)µ(ηA→B(I, F ))P(A → B) = µ(A ∪B)µ(I ⊕ F ⊕ (A ∪B))P(A ∪B → A ∩B).

In other words, we only need to consider the transition from the larger set A ∪ B to the
smaller set A ∩B. In particular, since |A ∩B| ≤ |A ∪B|, we can lower bound the transition
probability as

P(A ∪B → A ∩B) ≥ ρ2

m
,

independent of λ. Hence, to prove the desired bound on α, it suffices to show that

µ(I)µ(F ) ≤ ρ−4 · µ(ηA→B(I, F ))µ(A ∪B).

We can cancel ẐG(ρ, λ)
2 from the denominator in both sides; similarly, the factors of λ cancel.

Since 0 ≤ ρ ≤ 1, it thus suffices to show that for any set of edges T we encounter in the
canonical path PI→F (e.g. A ∪B), then

4 + |odd(I)|+ |odd(F )| ≥ |odd(T )|+ |odd(I ⊕ F ⊕ T )| .

Let us first consider the following special case.

Claim 2.2. Suppose T ⊆ E is obtained from I by completely traversing some of the paths
and cycles, and hasn’t started traversing the next path/cycle. In other words, T is of the form
T = I ⊕ P1 ⊕ · · · ⊕ Pj or T = I ⊕ P1 ⊕ · · · ⊕ Pk ⊕ C1 ⊕ · · · ⊕ Cj for some j. Then

|odd(I)|+ |odd(F )| = |odd(T )|+ |odd(I ⊕ F ⊕ T )| .
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Proof. Let us start with the simplest nontrivial case T = I ⊕ P1 and I ⊕ F ⊕ T = F ⊕ P1.
Let u, v be the two endpoints of the path P1; note that u, v ∈ odd(I⊕F ) = odd(I)⊕odd(F ).
If u ∈ odd(I) \ odd(F ) and v ∈ odd(F ) \ odd(I), then both odd(T ) = odd(I) − u + v and
odd(I ⊕F ⊕ T ) = odd(F ) + u− v hold, which immediately implies the desired equality. The
same reasoning applies for the other three cases

– u ∈ odd(F ) \ odd(I), v ∈ odd(I) \ odd(F )

– u, v ∈ odd(I) \ odd(F )

– and u, v ∈ odd(F ) \ odd(I).

It follows that for any 1 ≤ j ≤ k, letting Tj = Tj−1 ⊕ Pj and T0 = I, we get

|odd(Tj)|+ |odd(I ⊕ F ⊕ Tj)| = |odd(Tj−1)|+ |odd(I ⊕ F ⊕ Tj−1)|
= · · ·
= |odd(I)|+ |odd(F )| .

The case of flipping all edges in a cycle is easier, since the set of odd-degree vertices doesn’t
change at all.

Now, let us consider the fully general case, where T could be in the middle of traversing one
of the paths Pj (with a similar analysis if instead we’re in the middle of traversing one of
the cycles Cj). Let Tstart denote the edge set we had right before starting to traverse Pj ;
similarly, let Tend denote the edge we would get as soon as we finish traversing Pj . We claim
that ∣∣∣∣|odd(T )| − |odd(Tstart)|+ |odd(Tend)|

2

∣∣∣∣ ≤ 2.

To see this, observe that for any A ⊆ E and e ∈ E, we have ||odd(A)| − |odd(A⊕ e)|| ≤ 2 since
flipping e only changes the membership of its two endpoints in the set of odd-degree vertices.
Furthermore, since we are flipping consecutive edges along a traversal of a path/cycle, this
discrepancy never increases above 2. The same reasoning also establishes that∣∣∣∣|odd(I ⊕ F ⊕ T )| − |odd(I ⊕ F ⊕ Tstart)|+ |odd(I ⊕ F ⊕ Tend)|

2

∣∣∣∣ ≤ 2.

Once we have these two inequalities, then we’re done, since

|odd(I)|+ |odd(F )| = |odd(Tstart)|+ |odd(I ⊕ F ⊕ Tstart)|
|odd(I)|+ |odd(F )| = |odd(Tend)|+ |odd(I ⊕ F ⊕ Tend)|

from Claim 2.2.

3 On Random Initializations
Arguably, a more “natural” solution to the bottleneck from applying Glauber dynamics directly to µ
is instead to “average out” the identities of the spins {±1} at the algorithmic level. More specifically,
we choose a special initial distribution ν and hope that ∥νPt − µ∥TV ≤ ϵ for t ≤ poly(n, log(1/ϵ)),
even though the mixing time from a worst-case initial distribution δx can be exponentially large.
This is probably a more practical solution to sampling from the ferromagnetic Ising model, but
there are much fewer available tools for analyzing such methods.

Given that at low temperatures, we expect µ to concentrate around the 1 and −1 configu-
rations, one natural choice could be ν = 1

2δ1 + 1
2δ−1. This was recently studied in a paper of

Gheissari–Sinclair [GS22], where the case of random d-regular graphs and the d-dimensional torus
are considered. However, this initialization definitely fails for more general graphs with sparse cuts.
For instance, imagine the graph G consists of

√
n copies of disjoint complete graphs K√

n, each on√
n vertices, and with no edges between them. Then at low temperature, µ actually concentrates

on 2
√
n configurations; the only constraint is that all vertices in the same copy of K√

n must have
the same {±1}-spin.

Another natural initial distribution is to take Unif{±1}n. As far as we are aware, it open to
prove or disprove the following.
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Question 1. Is it true that for any graph G = (V,E) and every β ≥ 0, if we take the initial distri-
bution of Glauber dynamics to be ν = Unif{±1}n, then ∥νPt − µ∥TV ≤ ϵ for t ≤ poly(n, log(1/ϵ)).

From a mathematical perspective, methods based on bounding worst-case mixing for various
expansions of the Ising model (e.g. even subgraphs) seem to be more “robust” to perturbations
in the input (e.g. introducing consistent but nonuniform external fields h ∈ RV

≥0). However, at
least for the even subgraphs analysis we did in this lecture, the ultimate mixing time scales as
O(m3/ρ6). Although this has been improved drastically to nearly-linear mixing time for constant
ρ (see [CLV21a; CLV21b] for the bounded-degree case, and [CZ23] more generally), in the regime
of ρ ≤ 1/n (corresponding to small external field h ≤ O(1/n)), the running time scales at least like
O(n6m3) from the proof of Theorem 1.4 (and the proof of Corollary 1.5); the techniques in more
recent works [CLV21b; CZ23] break down completely in this regime of ρ. This raises the following
question.

Question 2. Does there exist a nearly-linear time sampler for the ferromagnetic Ising model for
all graphs G = (V,E), and all β ∈ R≥0, h ∈ R?
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A Unfinished Proofs for Even Subgraphs
Proof of Proposition 1.2. The key is the identity ex = cosh(x) · (1 + tanh(x)). Then each term of
ZG(β, h) is given by

exp

(
β

2
σ⊤Aσ + h · ⟨σ,1⟩

)
=
∏

uv∈E

exp(βσuσv)
∏
v∈V

exp(hσv)

=
∏

uv∈E

cosh(βσuσv)
∏

uv∈E

(1 + tanh(βσuσv))
∏
v∈V

cosh(hσv)
∏
v∈V

(1 + tanh(hσv))

= cosh(β)|E| cosh(h)|V | ·
∏

uv∈V

(1 + σuσv tanh(β))
∏
v∈V

(1 + σv tanh(h))

(cosh is even and tanh is odd)

= cosh(β)|E| cosh(h)|V | ·

∑
F⊆E

tanh(β)|F |
∏

uv∈F

σuσv

∑
S⊆V

tanh(h)|S|
∏
v∈S

σv


= cosh(β)|E| cosh(h)|V | ·

∑
F⊆E
S⊆V

tanh(β)|F | tanh(h)|S|

 ∏
v∈odd(F )

σv

(∏
v∈S

σv

)
︸ ︷︷ ︸

=
∏

v∈odd(F )⊕S σv

. (Using σ2
v = 1)

It follows that

ZG(β, h) = cosh(β)|E| cosh(h)|V | ·
∑
F⊆E
S⊆V

tanh(β)|F | tanh(h)|S|
∑

σ∈{±1}V

∏
v∈odd(F )⊕S

σv.

Since
∑

σ∈{±1}V

∏
v∈A σv equals 2|V | if A = ∅ and 0 otherwise, the only terms which survive the

above summations are those such that S = odd(F ). The claim immediately follows.

Proof of Proposition 1.3. Let (ρt)
T
t=0 be a decreasing sequence such that ρT = ρ and ρ0 = 1; we

instantiate this sequence later. Then

ẐG(ρ, λ) = ẐG(ρ0, λ) ·
T∏

t=1

ẐG(ρt, λ)

ẐG(ρt−1, λ)
= ẐG(1, λ) ·

T∏
t=1

EF∼µ̂ρt−1,λ

[(
ρt

ρt−1

)|odd(F )|
]
.

Note that ẐG(1, λ) = (1+λ)|E|, which is trivial to compute. We combine the given FPAS with the

Monte Carlo method to estimate each of the terms EF∼µ̂ρt−1,λ

[(
ρt

ρt−1

)|odd(F )|
]
. Since (ρt)

T
t=0 is

decreasing, F 7→
(

ρt

ρt−1

)|odd(F )|
is a 1-bounded function. We prove the following claim, which tells

us we can take T ≈ (1 − ρ)n and ρt = ρt−1 − 1
n for all t; for this interpolation, the Monte Carlo

method efficiently estimates the desired expectations.

Claim A.1. Suppose ρt ≤ ρt−1 ≤ ρt +
1
n . Then

EF∼µ̂ρt−1,λ

[(
ρt

ρt−1

)|odd(F )|
]
≥ Ω(1).

Proof. This lower bound holds for two different reasons depending on the order of ρt−1, ρt. If
C ∈ (0, 1) is some absolute constant, then in the regime ρt−1 ≥ C, we have ρt−1 =

(
1±O

(
1
n

))
·ρt,

whence
(

ρt

ρt−1

)|odd(F )|
≥ Ω(1) uniformly for all F ⊆ E just from the fact that |odd(F )| ≤ |V | = n.

The interesting case is when ρt−1 ≤ C. In this case, we can’t hope to uniformly lower bound(
ρt

ρt−1

)|odd(F )|
for all F . However, because ρt−1 is not too large, the distribution µ̂ρt−1,λ places

more mass on those F ⊆ E with small |odd(F )|; for such F , we can afford a larger multiplicative
gap between ρt−1 and ρt. This is the intuition. To formally prove the claim, we use the original
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Ising model formulation. Let ht = arctanh ρt, ht−1 = arctanh ρt−1 and β = arctanhλ. Since
arctanh(x) blows up to ±∞ as x → ±1, but remains O(1)-Lipschitz for x bounded away from ±1,
the restriction ρt−1 ≤ C ensures that |ρt−1 − ρt| ≤ 1/n implies |ht−1 − ht| ≤ O(1/n). This is the
reason it is advantageous to use ZG(·, ·) from the “spin world”. Using this, we have

EF∼µ̂ρt−1,λ

[(
ρt

ρt−1

)|odd(F )|
]
=

ẐG(ρt, λ)

ẐG(ρt−1, λ)

=

(
cosh(ht−1)

cosh(ht)

)|V |

· ZG(β, ht)

ZG(β, ht−1)
(Proposition 1.2)

≥
(
cosh(ht−1)

cosh(ht)

)|V |

· min
σ∈{±1}V

exp ((ht − ht−1) · ⟨σ,1⟩)

(Using a1+···+an

b1+···+bn
≥ mini∈[n]

ai

bi
)

= exp (n · (ϕ(ht−1)− ϕ(ht))) . (Setting ϕ(x) = log cosh(x)− x)

Again, since ρt−1 ≤ C, we have |ht−1 − ht| ≤ O(1/n). Hence, the Ω(1) lower bound follows
provided ϕ is O(1)-Lipschitz on R; one can show this by observing that ϕ′(x) = tanh(x) − 1 is
bounded in absolute value by 2 for all x ∈ R.

Proof of Corollary 1.5. If ρ ≥ 1/n, then running Glauber dynamics and applying Theorem 1.4
already furnishes an FPAS. If ρ ≤ 1/n, we add an extra rejection sampling step on top. Suppose
we want to sample from µ̂ρ,λ to within 0 < δ < 1 total variation error, where ρ ≤ 1/n. Let
0 < C < 1 be the universal constant lower bound in Claim A.1.6 We run Glauber dynamics to
generate an approximate sample F ∼ ν where

∥∥ν − µ̂1/n,λ

∥∥
TV

≤ C2δ/4, and accept this as a valid
sample with probability

Pr[Accept | Proposed F ] = (ρn)
|odd(F )|

< 1.

Otherwise, we reject and try again. If we are aiming for δ total variation error, then we make
O(log(1/δ)) independent attempts; if we reject all such proposals, then we output an arbitrarily
chosen F∗ ⊆ E (e.g. ∅).

If it were the case that ν = µ̂1/n,µ, then any accepted proposal is automatically distributed
perfectly according to µ̂ρ,λ. However, our proposals are only approximately distributed according
to µ̂1/n,λ; furthermore, we don’t have access to the quantity ν(F ), so it isn’t clear how to “al-
gorithmically fix” the output distribution of an accepted proposal. Instead, we argue that both
Prν [Accept] ≥ Ω(1) and

∥∥ν − µ̂1/n,λ

∥∥
TV

≤ C2δ/4 together imply that the distribution of any ac-
cepted proposal is close to µ̂ρ,λ. We begin by lower bounding the overall acceptance probability,
which is also necessary for the efficiency of the algorithm.

Claim A.2. We have the lower bound Prν [Accept] ≥ C/2, which is a universal constant indepen-
dent of δ. Here, the subscript ν indicates w.r.t. which distribution the proposals are being generated
from.

Proof.

Pr
ν
[Accept] =

∑
F⊆E

Pr[Accept | Proposed F ] · Pr
ν
[Proposed F ]

= EF∼ν

[
(ρn)|odd(F )|

]
(Proposal distribution is ν)

= −C2δ/4 + EF∼µ̂1/n,λ

[
(ρn)|odd(F )|

]
(Using

∥∥ν − µ̂1/n,λ

∥∥
TV

≤ Cδ)

≥ C ·
(
1− Cδ

4

)
(Claim A.1)

≥ C/2. (0 ≤ δ, C ≤ 1)

6In the Jerrum–Sinclair paper, they show that one can take C = 1/10 [JS93].
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Claim A.2 ensures that the probability of rejecting all O(log(1/δ)) independent attempts is at
most O(δ). Again, if the true proposal distribution ν were actually the ideal proposal distribution
µ̂1/n,λ, then we’d be done immediately. No further analysis would be needed. However, we need
to correctly account for the case where we only have ∥ν − µ̂ρ,λ∥TV ≤ C2δ/4.

Let ξ denote the law of the output of the overall sampling algorithm and let L ≤ O(log(1/δ))
denote the maximum allowed number of proposals. Then for all F ⊆ E,

ξ(F ) =

L−1∑
ℓ=0

Pr[Accept | Proposed F ] · ν(F ) · Pr
ν
[Reject]ℓ + Pr

ν
[Reject]L · I[F∗ = F ]

=
Pr[Accept | Proposed F ] · ν(F )

Prν [Accept]
·
(
1− Pr

ν
[Reject]L

)
+ Pr

ν
[Reject]L · I[F∗ = F ].

It follows that

∥ξ − µ̂ρ,λ∥TV

≤ Pr
ν
[Reject]L · ∥δF∗ − µ̂ρ,λ∥TV +

(
1− Pr

ν
[Reject]L

)
· 1
2

∑
F⊆E

∣∣∣∣Pr[Accept | Proposed F ] · ν(F )

Prν [Accept]
− µ̂ρ,λ(F )

∣∣∣∣
≤ Pr

ν
[Reject]L +

1

2

∑
F⊆E

∣∣∣∣∣Pr[Accept | Proposed F ] · ν(F )

Prν [Accept]
−

Pr[Accept | Proposed F ] · µ̂1/n,λ(F )

Prµ̂1/n,λ
[Accept]

∣∣∣∣∣︸ ︷︷ ︸
(∗)

.

The main nontrivial step is controlling (∗), since we are comparing two different proposal distri-
butions. Since F 7→ (ρn)|odd(F )| is a 1-bounded function and

∥∥ν − µ̂1/n,λ

∥∥
TV

≤ C2δ/4, we have∣∣∣∣Prν [Accept]− Pr
µ̂1/n,λ

[Accept]

∣∣∣∣ = ∣∣∣EF∼ν

[
(ρn)|odd(F )|

]
− EF∼µ̂1/n,λ

[
(ρn)|odd(F )|

]∣∣∣ ≤ C2δ/4.

Furthermore, Claim A.2 says that Prν [Accept] ≥ C/2, and so this C2δ/4 additive approximation
is also a (1± Cδ/2)-multiplicative approximation. It follows that

(∗) ≤ 1

Prν [Accept]
· 1
2

∑
F⊆E

(ρn)|odd(F )| ·
∣∣(1± Cδ/2)ν(F )− µ̂1/n,λ(F )

∣∣
≤ 1

C
·

(∑
F⊆E

∣∣ν(F )− µ̂1/n,λ(F )
∣∣

︸ ︷︷ ︸
≤C2δ/2

+
Cδ

2

∑
F⊆E

ν(F )︸ ︷︷ ︸
=1

)
(Using ρn ≤ 1 and Prν [Accept] ≥ C/2)

≤ 1 + C

2
· δ.

Taking L ≤ O(log(1/δ)) sufficiently large, we also obtain Prν [Reject]
L ≤ 1−C

2 · δ, and so putting
everything together, we get ∥ξ − µ̂ρ,λ∥TV ≤ δ as desired.
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