
6.S891 Lecture 4: Spectral Methods, Conductance, and
Canonical Paths

Kuikui Liu

September 19, 2023

Our second class of methods is based on the spectrum of the transition probability matrix P.
This an extremely powerful method which gives a beautiful connection between probability and
linear algebra. We show combinatorial methods for controlling the spectral gap of P based on cuts
and flows. The main application we will eventually build up to is designing an FPRAS for the
famous ferromagnetic Ising model. Later on in the course, we’ll see even more powerful functional
analytic tools for studying mixing times.

1 The Poincaré Inequality
Let µ be a probability distribution over a finite state space Ω. This distribution induces an inner
product on the space of functions {f : Ω → R} ∼= RΩ given by

⟨f, g⟩µ
def
= Eµ[fg] =

∑
x∈Ω

µ(x)f(x)g(x).

Fact 1.1. A Markov chain P is reversible w.r.t. µ if and only if P is self-adjoint w.r.t. ⟨·, ·⟩µ, i.e.
⟨f,Pg⟩µ = ⟨Pf, g⟩µ for all f, g : Ω → R.

A proof is given in Appendix B. This tells us that reversible Markov chains P must have
real eigenvalues, and we can order them as −1 ≤ λ|Ω| ≤ · · · ≤ λ2 ≤ λ1 = 1. We write

λ∗
def
= maxi>1 |λi| = max{λ2,

∣∣λ|Ω|
∣∣} for the second largest eigenvalue in absolute value. Note

that irreversibility translates to λ2 < 1, and aperiodicity translates to λ|Ω| > −1. In particular,
ergodicity yields λ∗ < 1. We also write γ = 1 − λ2 for the spectral gap, and γ∗ = 1 − λ∗ for the
absolute spectral gap. Note that if P has been lazified, all eigenvalues of P are nonnegative, in
which case γ = γ∗.

Theorem 1.2 (Spectral Gap Implies Rapid Mixing; see e.g. [LPW17]). Let P be an ergodic Markov
chain on Ω which is reversible w.r.t. µ. Then for every x ∈ Ω and every ϵ > 0,

Tmix(ϵ; δx,P) ≤
1

γ∗
log

(
1

2ϵ ·
√
µ(x)

)
.

In particular,

Tmix(ϵ) ≤
1

γ∗

(
1

2
log

1

µmin
+ log

1

2ϵ

)
,

where µmin
def
= minx∈supp(µ) µ(x) is the minimum nonzero probability under µ.

Note that having a spectral gap is necessary for rapid mixing. We prove this converse in
Appendix A.

Lemma 1.3 (Rapid Mixing Implies Spectral Gap; see e.g. [LPW17]). Let P be an ergodic Markov
chain on Ω which is reversible w.r.t. µ. Then

Tmix(ϵ) ≥
(

1

γ∗
− 1

)
log

1

2ϵ
.
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The goal of this section is to prove Theorem 1.2; an “alternative” proof based on a full spectral
decomposition of P is provided in Appendix A. The high-level idea is to replace ∥µ− ν∥TV with
χ2-divergence

χ2(ν ∥µ) def
= Varµ

(
dν

dµ

)
,

as our measure of distance to stationarity.1 This distance turns out to be easier to work with than
total variation since it looks more like Euclidean distance. In particular, for every f : Ω → R, its
variance admits the following linear algebraic interpretation

Varµ(f) = ⟨f, f⟩µ − ⟨f,1⟩2µ.

We need the following comparison lemma between χ2-divergence and TV-distance.

Lemma 1.4. For every pair of distributions µ, ν on Ω, writing dν
dµ (x) =

ν(x)
µ(x) for the density of ν

w.r.t. µ, we have the inequality

∥µ− ν∥2TV ≤ 1

4
Varµ

(
dν

dµ

)
.

We prove this in Appendix B. Before we give the full proof of Theorem 1.2, we first present
another viewpoint on the spectral gap γ which will be useful. Define the Dirichlet form of a
reversible Markov chain P by

EP(f, g)
def
= ⟨f, (Id− P)g⟩µ =

1

2

∑
x,y∈Ω

µ(x)P(x→ y) · (f(x)− f(y)) · (g(x)− g(y)).

If f = g, this can be interpreted as a measure of the “local variance” of the function f w.r.t. the
transition of P. The matrix Id−P is sometimes called the Laplacian. On the other hand, a simple
calculation reveals that the global variance of a function f can be rewritten as

Varµ(f) =
1

2

∑
x,y∈Ω

µ(x)µ(y) · (f(x)− f(y))2.

We say P satisfies a Poincaré Inequality with constant C > 0 if

C ·Varµ(f) ≤ EP(f, f), ∀f : Ω → R.

Fact 1.5. Let P be a reversible Markov chain. Then we have the identity

γ = inf
f

EP(f, f)
Varµ(f)

,

where the infimum is over all functions with nonzero global variance.

This is just the variational characterization of eigenvalues. The functions with nonzero global
variance are precisely those which are not constant; in particular, they have a nonzero component
orthogonal to the top (right) eigenfunction 1. Because of Fact 1.5, the spectral gap γ is also some-
times called the Poincaré constant of P. Later on, we’ll see how to define other useful functional
analytic constants which better capture mixing times.

Proof of Theorem 1.2. Let x ∈ Ω be arbitrary. By Lemma 1.4, it suffices to show that for all t ∈ N,

Varµ

(
d(δxP

t)

dµ

)
≤ λ

2t
∗ ·Varµ

(
dδx
dµ

)
= λ

2t
∗ · 1− µ(x)

µ(x)
.

1For p ≥ 1, one can also define Lp-norms via ∥f∥µ,p
def
= Eµ [|f |p]1/p, and Lp-divergences via between probability

measures µ, ν via
∥∥∥ dµ

dν
− 1

∥∥∥
µ,p

. The case p = 1 recovers total variation (up to a factor of 1/2), while the case p = 2

yields χ2-divergence (after squaring).
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For this, since Varµ(f) = ⟨f, f⟩µ − ⟨f,1⟩2µ and d(νP)
dµ = P · dν

dµ for all distributions ν,2

Varµ

(
dν

dµ

)
−Varµ

(
d(νP)

dµ

)
=

〈
dν

dµ
,
dν

dµ

〉
µ

−
〈
dν

dµ
,1

〉2

µ

−
〈
P
dν

dµ
,P
dν

dµ

〉
µ

+

〈
P
dν

dµ
,1

〉2

µ

=

〈
dν

dµ
, (I − P2)

dν

dµ

〉
µ

(Using P1 = 1 and self-adjointness)

= EP2

(
dν

dµ
,
dν

dµ

)
.

Using Fact 1.5 and the fact that the eigenvalues of P2 are squares of the eigenvalues of P, we see
that P2 satisfies a Poincaré Inequality with constant 1− λ 2

∗ . It follows that

Varµ

(
dν

dµ

)
−Varµ

(
d(νP)

dµ

)
≥
(
1− λ

2
∗
)
·Varµ

(
dν

dµ

)
,

which upon rearranging, yields

Varµ

(
d(νP)

dµ

)
≤ λ

2
∗ ·Varµ

(
dν

dµ

)
, ∀ν.

Applying this iteratively to the distributions ν = δxP
j for j = 0, . . . , t− 1 finishes the proof.

Spectral Methods vs. Markovian Couplings In the previous lecture, we saw simple proba-
bilistic methods for proving fast mixing based on Markovian couplings. It turns out that there are
natural Markov chains for natural sampling problems where

• one can certify fast mixing by bounding its spectral gap, and

• provably, every Markovian coupling necessarily requires exponential time to coalesce.

This was shown for a simple swap-based Markov chain on the collection of perfect and “near-
perfect” matchings in a bipartite graph. Fast mixing was proved by Jerrum–Sinclair using the
methods we discuss in this lecture [JS89]. The fact that no Markovian coupling can certify fast
mixing is a beautiful result due to Kumar–Ramesh [KR01].

2 The Conductance Method
We now describe combinatorial ways of getting a handle on the Poincaré constant γ. The first is
to study the sparsity of cuts in the state space Ω.

Definition 1 (Conductance). Let P be a Markov chain which is reversible w.r.t. a distribution µ
on Ω. For every S ⊆ Ω, define the conductance of S w.r.t. P to be the ratio

Φ(S)
def
=

∑
x∈S,y∈Ω\S µ(x)P(x→ y)∑

x∈S µ(x)
.

Further define the conductance3 of P to be

Φ(P)
def
= inf

S⊆Ω:µ(S)≤1/2
Φ(S).

Roughly speaking, the conductance of a set S ⊆ Ω measures how likely the Markov chain
started within S is to leave S in one step. If Φ(S) is small, then the Markov chain is likely to stay
trapped within S, preventing mixing. In the other direction, a strong lower bound on Φ(P) says
that there are no such “bottlenecks” in the state space Ω. In this case, we expect P to mix rapidly.
The following theorem is one way to formalize this; we can quantitatively connect the conductance
Φ(P), a purely combinatorial quantity, with the spectral gap γ of P.

2This follows from reversibility, since for all functions g : Ω → R,
〈

d(νP)
dµ

, g
〉
µ
= ν⊤Pg =

〈
g,P dν

dµ

〉
µ
.

3The number Φ(P) is also sometimes called the isoperimetric constant or the Cheeger constant.
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Theorem 2.1 (Cheeger’s Inequality; [SJ89; LS88]). For every reversible Markov chain P,

1

2
Φ(P)2 ≤ γ ≤ 2Φ(P).

The upper bound is easy; one can just plug in the indicator function 1S into the Poincaré
Inequality. The lower bound is more nontrivial; for a proof, see e.g. [LPW17].

Strategy for Mixing Lower Bounds Suppose one wanted to show that a reversible Markov
chain mixes slowly. Combining Theorem 2.1 with Lemma 1.3, it suffices to find any S ⊆ Ω such
that Φ(S) is small.

2.1 Flows and Canonical Paths
Theorem 2.1 gives a connection between the Poincaré Inequality and cuts in Ω viewed as a graph
with edges given by P. A dual viewpoint is to look at path/flows in Ω. Imagine we set up a
multicommodity flow problem on Ω as follows: We wish to send µ(x)µ(y) “units” of flow from state
x to y (and vice versa), routed using the transitions of P. In particular, we choose a collection
of paths P = {Px→y}x,y∈Ω, one for each pair x, y ∈ Ω, where Px→y is a sequence of transitions
x = z0 → · · · → zℓ = y using P. However, each possible transition a → b has a “cost” for usage
(or “capacity”), given by µ(a)P(a→ b). We want to route the flow efficiently, as quantified by the
length of the paths |Px→y| and the congestion of a transition a→ b, defined as

CP(a→ b)
def
=

1

µ(a)P(a→ b)

∑
x,y∈Ω:(a,b)∈Px→y

µ(x)µ(y).

Theorem 2.2 (Jerrum–Sinclair; [JS89]). For every collection of paths {Px→y}x,y∈Ω,

1

γ
≤ max

x,y∈Ω
|Px→y| ·max

a→b
CP(a→ b).

Proof. We verify the Poincaré Inequality. Let f : Ω → R be an arbitrary function. Then

Varµ(f) =
1

2

∑
x,y∈Ω

µ(x)µ(y) · (f(x)− f(y))2

=
1

2

∑
x,y∈Ω

µ(x)µ(y) ·

 ∑
(a,b)∈Px→y

(f(a)− f(b))

2

(Telescoping)

≤ max
x,y∈Ω

|Px→y| ·
1

2

∑
x,y∈Ω

µ(x)µ(y)
∑

(a,b)∈Px→y

(f(a)− f(b))2 (Cauchy–Schwarz)

= max
x,y∈Ω

|Px→y| ·
∑

transition (a,b)

(f(a)− f(b))2
∑

x,y∈Ω:(a,b)∈Px→y

µ(x)µ(y)

(Exchange summation order)

≤ max
x,y∈Ω

|Px→y| ·max
a→b

CP(a→ b) ·
∑
a,b∈Ω

µ(a)P(a→ b) · (f(a)− f(b))2

= max
x,y∈Ω

|Px→y| ·max
a→b

CP(a→ b) · EP(f, f).

Rearranging and applying Fact 1.5 completes the proof.

There is a precise duality with conductance related to linear programming, which we won’t
have time to discuss.4

4Technically, one needs to look at a slightly different notion of conductance given by Φ̃(S) =∑
x∈S,y∈Ω\S µ(x)P(x→y)∑

x∈Ω,y∈Ω\S µ(x)µ(y)
; note that Φ(S) ≤ Φ̃(S) ≤ 2Φ(S) if µ(S) ≤ 1/2.
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Strategy for Mixing Upper Bounds Given Theorem 2.2, one strategy for upper bounding
mixing times (or lower bounding spectral gaps) is to construct any set of short paths P = {Px→y}
with small congestion maxa→b CP(a → b). This sometimes called the canonical paths method.
Typically, bounding the lengths of the paths isn’t an issue. The main challenge is ensuring small
congestion.
Example 1 (Hypercube). We illustrate a simple construction of canonical paths for Glauber dy-
namics on {±1}n. For two vectors x, y ∈ {±1}n, we define a canonical path Px→y by going in order
of the coordinates 1, . . . , n, and flipping xi if yi ̸= xi. More precisely, Px→y = {x = z0 → · · · →
zn = y}, where zk agrees with y on the first k coordinates, and agrees with x on the remaining
n− k coordinates.

Clearly, |Px→y| ≤ n. Let us now bound the congestion. Note that

P(a→ b) =
1

2n
.

Since µ is uniform over {±1}n,

CP(a→ b) = 2n · 2−n ·#{(x, y) : (a→ b) ∈ Px→y}.

We prove that this number of paths is at most 1
2 ·2

n, from which it will follow that CP(a→ b) ≤ n
for all transition a → b. Fix a transition a → b, where coordinate k is flipped for some k ∈ [n]. If
x, y ∈ {±1}n are such that (a→ b) ∈ Px→y, then xmust agree with a on coordinates k, . . . , n (since
they haven’t been processed yet by the time we reach a), and y must agree with b on coordinates
1, . . . , k (since they have been processed already by the time we reach b). It follows that there are
2k−1 choices for x and 2n−k choices for y. In particular,

#{(x, y) : (a→ b) ∈ Px→y} ≤ 2k−1 · 2n−k =
1

2
· 2n.

It follows that maxa→b CP(a→ b) ≤ n, and so 1/γ ≤ n2 by Theorem 2.2. Further combined with
Theorem 1.2, this implies that Glauber dynamics mixes in O(n3)-steps.

We saw in the previous lecture that a simple coupling argument certifies O(n log n) mixing
for Glauber dynamics with uniform stationary measure on {±1}n, which is sharp. Example 1
highlights a key downside behind spectral methods and canonical paths. Even if one obtains sharp
bounds on the spectral gap, in many applications, the mixing time will often be off by a factor of
n from the true mixing time. This is because we’re only using the second largest eigenvalue of P,
ignoring all other eigenvalues. One often loses an additional factor of n from using canonical paths
to bound the spectral gap. Nevertheless, there are natural Markov chains for important sampling
problems for which canonical paths remains the only known method certifying fast mixing.
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A Spectral Theory
Recall that for reversible Markov chains P, the eigenvalues of P are real, and can be ordered as
−1 ≤ λ|Ω| ≤ · · · ≤ λ2 ≤ λ1 = 1.
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Lemma A.1 (Spectral Decomposition of Reversible Markov Chains). Let P be reversible w.r.t. µ.
Then RΩ admits a basis {ψi}|Ω|

i=1 satisfying the following:

1. Each ψi is a (right) eigenfunction of P, i.e. Pψi = λiψi. Furthermore, ψ1 = 1.

2. The collection {ψi}|Ω|
i=1 is orthonormal w.r.t. the inner product ⟨·, ·⟩µ.

3. For every x, y ∈ Ω and every t ∈ N,

Pt(x→ y)

µ(y)
=

|Ω|∑
i=1

λ
t
iψi(x)ψi(y).

In particular, we may express the measure δxPt in density form as

d(δxP
t)

dµ
=

|Ω|∑
i=1

λ
t
iψi(x) · ψi.

Proof. Since P is in general asymmetric, our strategy will be to reduce the Spectral Theorem for
symmetric matrices. Let Dµ = diag(µ), and consider Aµ

def
= D

1/2
µ PD

−1/2
µ . (In the spectral graph

theory literature, this is sometimes called the “normalized adjacency matrix” to distinguish it from

the usual random walk matrix.) This matrix has entries
√

µ(x)√
µ(y)

P(x → y), and hence is symmetric

by reversibility of P. Furthermore, it has the same set of eigenvalues as P, since if Pψ = λψ,
then AµD

1/2
µ ψ = λD

1/2
µ ψ (and vice versa). Finally, a direct calculation reveals that √

µ (taken
entrywise) is a right eigenfunction of Aµ with eigenvalue 1. It follows from the Spectral Theorem
that Aµ admits a decomposition

Aµ =

|Ω|∑
i=1

λiφiφ
⊤
i ,

where {φi}|Ω|
i=1 is a collection of eigenfunctions which are orthonormal w.r.t. the standard Euclidean

inner product, and φ1 =
√
µ.

We set ψi = D
−1/2
µ φi for all i = 1, . . . , |Ω|; clearly, ψ1 = 1. As we saw earlier when we

argued that P and Aµ have the same eigenvalues, we have Pψi = λiψi for all i. Furthermore,
⟨ψi, ψj⟩µ = ⟨φi, φj⟩ and so we get orthonormality w.r.t. ⟨·, ·⟩µ. Only the third claim remains.
Since

Pt = (D−1/2
µ AµD

1/2
µ )t = D−1/2

µ At
µD

1/2
µ

=

|Ω|∑
i=1

λ
t
i ·
(
D−1/2

µ φi

)
· (Dµφi)

⊤

=

|Ω|∑
i=1

λ
t
iψiψ

⊤
i ·Dµ,

we see that

d(δxP
t)

dµ
= δ⊤x PtD−1

µ =

|Ω|∑
i=1

λ
t
i ⟨δx, ψi⟩ψ⊤

i

as row vectors, and so we’re done.

“Alternative” Proof of Theorem 1.2. Applying Lemma 1.4 and the inequality λ
1/γ∗
∗ ≤ 1/e, it suf-

fices to show that for every t ∈ N, ∥∥∥∥d(δxPt)

dµ
− 1

∥∥∥∥
µ,2

≤ λ t
∗√
µ(x)

,
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where ∥f∥µ,2
def
=
√
⟨f, f⟩µ. Using Lemma A.1 and expanding, the left-hand side is precisely

∥∥∥∥d(δxPt)

dµ
− 1

∥∥∥∥2
µ,2

=

|Ω|∑
i=2

λ
2t
i ψi(x)

2 ≤ λ
2t
∗

|Ω|∑
i=2

ψi(x)
2 =

λ 2t
∗

µ(x)2

|Ω|∑
i=2

⟨ψi, δx⟩2µ ≤ λ 2t
∗

µ(x)2
· ⟨δx, δx⟩µ.

This completes the proof. Note that in the last step, we used orthonormality of {ψi}|Ω|
i=1 w.r.t. the

inner product ⟨·, ·⟩µ to write δx =
∑|Ω|

i=1⟨ψi, δx⟩µ · ψi.

Proof of Lemma 1.3. Let ψ be a (right) eigenfunction of P with eigenvalue λ∗. Then ⟨ψ,1⟩µ = 0,
and so for every t ∈ N and every x ∈ Ω,

λ
t
∗ · |ψ(x)| =

∣∣(Ptψ)(x)
∣∣

=

∣∣∣∣∣∣
∑
y∈Ω

(
Pt(x→ y)− µ(y)

)
· ψ(y)

∣∣∣∣∣∣
≤ 2 ·max

y∈Ω
|ψ(y)| ·

∥∥δxPt − µ
∥∥
TV
.

Choosing x maximizing |ψ(x)|, it follows that

λ
t
∗ ≤ 2 ·max

x∈Ω

∥∥δxPt − µ
∥∥
TV

Applying the definition of mixing time, we obtain λ
Tmix(ϵ)
∗ ≤ 2ϵ, from which it follows that

Tmix(ϵ) ·
(

1

λ∗
− 1

)
≥ Tmix(ϵ) · log

1

λ∗
≥ log

1

2ϵ
.

Rearranging and using γ∗ = 1− λ∗ yields the claim.

B Proofs of Technical Lemmas
Proof of Lemma 1.4.

∥µ− ν∥TV =
1

2

∑
x∈Ω

µ(x) ·
∣∣∣∣ν(x)µ(x)

− 1

∣∣∣∣
≤ 1

2

√√√√∑
x∈Ω

µ(x) ·
∣∣∣∣ν(x)µ(x)

− 1

∣∣∣∣2 ·√∑
x∈Ω

µ(x)

︸ ︷︷ ︸
=1

(Cauchy–Schwarz)

=
1

2

√
Varµ

(
dν

dµ

)
.

Proof of Fact 1.1. Reversibility of P w.r.t. µ is exactly self-adjointness w.r.t. the standard basis
functions {δx : x ∈ Ω} of RΩ, where δx places unit mass at x and is zero everywhere else. Hence,
full self-adjointness implies reversibility. For the other direction, observe that self-adjointness w.r.t.
a basis of RΩ implies self-adjointness for all functions just by linearity.
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