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The goal of this lecture is to introduce the first set of tools for bounding mixing times of Markov
chains. The key idea here is to construct good couplings of distributions and Markov chains, which
give a direct handle on the total variation distance. We will use the coupling method to prove the
Fundamental Theorem of Markov Chains from the previous lecture.

1 The Coupling Method
We first describe the coupling method, which gives a direct way of upper bounding mixing times.
We begin by defining couplings for distributions, and then lift them to couplings of Markov chains.

1.1 Coupling for Distributions
Definition 1 (Coupling). Let µ, ν be probability measures on Ω,Σ, respectively. A coupling of µ, ν
is a probability measure ξ on Ω× Σ such that

µ(x) =
∑
y∈Σ

ξ(x, y), ∀x ∈ Ω

ν(y) =
∑
x∈Ω

ξ(x, y), ∀y ∈ Σ.

In other words, the marginals of ξ on each coordinate are precisely µ, ν, respectively.

One can think of a coupling of µ, ν as a method for sampling a pair of random variables (X,Y )
such that Law(X) = µ (ignoring Y ), and Law(Y ) = ν (ignoring X). Note that couplings always
exist, since we always have the product measure

(µ⊗ ν)(x, y)
def
= µ(x) · ν(y)

on Ω × Σ. In this case, we just sample X ∼ µ, Y ∼ ν independently. At the other extreme, if
µ = ν, then we always have the identity coupling, where

ξ(x, y) =

{
µ(x) = ν(x), if x = y

0, otherwise
.

Algorithmically, we just sample X ∼ µ and output (X,X).
The following lemma gives us the connection between couplings and total variation distance,

and is key to using couplings towards bounding mixing times.

Lemma 1.1 (Coupling Lemma). Let µ, ν be two distributions on the same state space Ω. Then

∥µ− ν∥TV = inf
ξ

Pr
(X,Y )∼ξ

[X ̸= Y ],

where the infimum is over all couplings ξ of µ and ν.

Remark 1. The two characterizations

∥µ− ν∥TV = sup
f :Ω→[0,1]

|Eµ[f ]− Eν [f ]| = inf
ξ

Pr
(X,Y )∼ξ

[X ̸= Y ],

can actually be interpreted through the lens of linear programming duality.
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Proof. We first prove the upper bound. First, since ξ is a coupling, ξ(x, x) ≤ min{µ(x), ν(x)} for
all x ∈ Ω so that Pr(X,Y )∼ξ[X = Y ] =

∑
x∈Ω ξ(x, x) ≤

∑
x∈Ω min{µ(x), ν(x)}. It follows that

∥µ− ν∥TV =
∑

x:µ(x)≥ν(x)

(µ(x)− ν(x))

=
∑
x∈Ω

(µ(x)−min{µ(x), ν(x)})

= 1−
∑
x∈Ω

min{µ(x), ν(x)}

≤ 1− Pr
(X,Y )∼ξ

[X = Y ]

= Pr
(X,Y )∼ξ

[X ̸= Y ].

To prove that we have equality, it suffices to devise a coupling ξ such that the only inequality above
is saturated, i.e. we must ensure that ξ(x, x) = min{µ(x), ν(x)} for all x ∈ Ω. At this point, I
could just hand you a clean formula and save all of us some pain (see Remark 2). Here, is how one
could try to reason about it step by step. Let A = {x : µ(x) > ν(x)}, B = {x : ν(x) > µ(x)} and
C = {x : µ(x) = ν(x)}. Then, as a Ω× Ω matrix with rows summing to µ and columns summing
to ν, we need ξ to have the following block structure:

1. Along the diagonal blocks A × A, B × B and C × C, we have diagonal entries ξ(x, x) =
min{µ(x), ν(x)}. The off-diagonal entries for these blocks must all be zero since one of the
marginal distributions must be saturated.

2. The blocks A×C, B×C, C×A and C×B must all be zero both marginals µ, ν have already
been saturated by the C × C block. Similarly, the B ×A block must be zero.

ξ =

A B C( )
diag ??? 0 A
0 diag 0 B
0 0 diag C

Thus, the only freedom we have in choosing our optimal coupling is designing the A×B submatrix
of ξ such that

µ(x)− ν(x) =
∑
y∈B

ξ(x, y), ∀x ∈ A

ν(y)− µ(y) =
∑
x∈A

ξ(x, y), ∀y ∈ B.

Since µ(A) − ν(A) = ν(B) − µ(B), such a submatrix is always possible. For instance, one can
sort A in increasing order of µ(x) − ν(x), sort B analogously, and inductively build a triangular
matrix.

Remark 2. Here is a formula for such an optimal coupling. Take ξ(x, x) = min{µ(x), ν(x)} for all
x ∈ Ω, and for x ̸= y, set

ξ(x, y) =
(µ(x)− ξ(x, x)) · (ν(y)− ξ(y, y))

1−
∑

z∈Ω ξ(z, z)
.

1.2 Coupling for Markov Chains
Now that we have the notion of coupling for distributions, we can define the notion of coupling for
Markov chains.

Definition 2 (Markov Chain Coupling). Let PX ,PY be two Markov chains on a common state
space Ω. A coupling of these two Markov chains is a stochastic process (Xt, Yt)

∞
t=0 on Ω×Ω such

that for every t ≥ 0 and every a, b ∈ Ω,

Pr[Xt+1 = b | Xt = a] = PX(a→ b)

Pr[Yt+1 = b | Yt = a] = PY (a→ b).
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In other words, each marginal process (Xt)
∞
t=0, (Yt)

∞
t=0 is a faithful simulation of PX ,PY , respec-

tively. We say such a coupling is Markovian if the process (Xt, Yt)
∞
t=0 is a Markov chain, i.e. for

every t ≥ 0 and every a, b, c ∈ Ω,

Pr[Xt+1 = c | Xt = a, Yt = b] = PX(a→ c)

Pr[Yt+1 = c | Xt = a, Yt = b] = PY (b→ c).

In most applications (e.g. bounding mixing times), we’ll take PX = PY , and the coupling will
be Markovian. Such couplings are typically easier to analyze. Note that in our couplings, we can
always enforce that Xt = Yt implies that XT = YT for all T ≥ t with probability 1; in other
words, the moment the two copies of the chain coalesce, they stay stuck together forever. Another
way to think of a Markovian coupling is designing a coupling Q((x, y) → (·, ·)) of PX(x → ·) and
PY (y → ·), in the sense of Definition 1, for all pairs (x, y) ∈ Ω × Ω. The matrix Q ∈ RΩ2×Ω2

describes the transition probabilities of the Markovian coupling (Xt, Yt)
∞
t=0.

The following shows the connection between Markov chain couplings and mixing times.

Lemma 1.2. Let P be a Markov chain on Ω with stationary distribution µ. Then for every coupling
(Xt, Yt)

∞
t=0 of the Markov chain P (with itself) such that X0 ∼ µ0 and Y0 ∼ µ,∥∥µ0P

t − µ
∥∥
TV
≤ Pr[Xt ̸= Yt].

Proof. Since (Xt, Yt) is a coupling and X0 ∼ µ0, Y0 ∼ µ, we have Xt ∼ µ0P
t and Yt ∼ µ. The

claim follows immediately via Lemma 1.1.

Example 1 (Hypercube). Consider Glauber dynamics for sampling from the uniform distribu-
tion over the discrete hypercube {±1}n; this is essentially the lazification of the simple random
walk on {±1}n under coordinate flips. In each step, we pick a uniformly random coordinate,
and resample a uniformly random {±1}-assignment for that coordinate. We build a coupling
(Xt, Yt)

∞
t=0 ⊆ {±1}n ×{±1}n as follows: Regardless of what Xt, Yt are, in each step, we select the

same coordinate i ∈ [n] and the same {±1}-assignment s, and set Xt+1(i) = Yt+1(i) = s (leaving
all other coordinates the same).

This is an honest coupling of two copies of the Markov chain with the property that if coordinate
i is selected at time step t, then XT (i) = YT (i) for all T ≥ t+ 1; in particular, once Xt = Yt, then
XT = YT for all T ≥ t. It follows from Lemma 1.2 that for all t ∈ N and all µ0,∥∥µ0P

t − µ
∥∥
TV
≤ Pr[∃ unsampled i ∈ [n] after t steps].

This is the classical Coupon Collector Problem, and it is well-known that the probability on the
right-hand side is at most e−c if t = 1

2n log n + cn. Hence, this Markov chain has ϵ-mixing time
O(n log(n/ϵ)). In some sense, this is the “gold standard” for mixing of Glauber-like Markov chains.

2 Proof of the Fundamental Theorem of Markov Chains
First, as we showed in the previous lecture, we know that at least one stationary distribution µ
exists. Furthermore, if we can prove that ∥δxPt − µ∥TV → 0 as t→∞ for any starting state x ∈ Ω,
then such a stationary distribution must be unique. Indeed, if ν is any stationary distribution of
P, then

∥ν − µ∥TV =
∥∥νPt − µ

∥∥
TV
≤
∑
x∈Ω

ν(x) ·
∥∥δxPt − µ

∥∥
TV

holds for every t ≥ 0. Sending t→∞ yields ν = µ.
We show the desired convergence by constructing a coupling. Since P is ergodic, there exists t∗

such that ϵ = minx,y P
t∗(x→ y) > 0. We can think of Pt∗ itself as a Markov chain Q on Ω. We will

prove that for every x, y ∈ Ω, ∥δxQt − δyQ
t∥TV ≤ (1− ϵ)t for all t ≥ 0. This contraction property

immediately implies that {δxQt}x∈Ω = {δxPt·t∗}x∈Ω all converge to the same distribution and
hence, so do the distributions {δxPt}x∈Ω. This contraction follows immediately via the following
trivial coupling (X ′

t, Y
′
t ) for Q: If X ′

t = Y ′
t , then transition to X ′

t+1 according to Q and set
Y ′
t+1 = Y ′

t . Otherwise, evolve X ′
t+1, Y

′
t+1 independently. Since Q(x, y) ≥ ϵ,

Pr[X ′
t+1 ̸= Y ′

t+1 | X ′
t ̸= X ′

t] ≤ 1− ϵ,
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from which it follows that

Pr[X ′
t ̸= Y ′

t | X ′
0 ̸= X ′

0] =

t−1∏
j=0

Pr[X ′
j+1 ̸= Y ′

j+1 | X ′
j ̸= X ′

j ] ≤ (1− ϵ)t.

The bound ∥δxQt − δyQ
t∥TV ≤ (1− ϵ)t then follows by Lemma 1.2.

3 Path Coupling
Constructing good couplings is in general a nontrivial task. The method of path coupling greatly
simplifies this task. We will leverage the following lemma, which shows how we can compose
couplings together. It is a straightforward exercise to verify this lemma.

Lemma 3.1 (Composition of Couplings). Let µ1, µ2, µ3 be probability measures on Ω1,Ω2,Ω3,
respectively. Let ξ12 be a coupling of µ1, µ2, and let ξ23 be a coupling of µ2, µ3. Then the distribution

ξ13(x, z)
def
=
∑
y∈Ω2

ξ12(x, y) · ξ23(y, z)
µ2(y)

is a coupling of µ1, µ3.

Remark 3. Another way to think of ξ13 is as the law of a random pair (X,Z) ∈ Ω1 ×Ω3 drawn as
follows: First, we sample Y ∼ µ2. Then, we sample X ∼ ξ12(·, Y ) and Z ∼ ξ23(Y, ·) independently,
and output (X,Z).

Theorem 3.2 (Path Coupling; Bubley–Dyer [BD97a; BD97b]). Let P be a Markov chain on
a finite state space Ω. Let E ⊆

(
Ω
2

)
such that the undirected graph (Ω, E) is connected, and

define dist(x, y) to be the shortest path distance in the graph (Ω, E). If there exists a coupling of
(Xt, Yt)→ (Xt+1, Yt+1), for every (Xt, Yt) ∈ E, such that

E[dist(Xt+1, Yt+1) | Xt, Yt] ≤ (1− α) · dist(Xt, Yt), (1)

then

Tmix(ϵ;P) ≤
1

α
· log

(
diam(Ω, E)

ϵ

)
.

Proof. The idea is to extend the given (incomplete) coupling into a full one satisfying Eq. (1) for
all (Xt, Yt), not only pairs in E. Once we have such a full coupling, then we’re done, since for all t

Pr[Xt ̸= Yt | X0, Y0] ≤ E[dist(Xt, Yt) | X0, Y0]

≤ (1− α)t · diam(Ω, E).

This is less than ϵ if t ≥ 1
α · log

(
diam(Ω,E)

ϵ

)
.

We perform this extension by composing, in the sense of Lemma 3.1, the given couplings along
a shortest path from Xt to Yt. Let Xt = Z

(0)
t , . . . , Z

(k)
t = Yt be such a shortest path from Xt to

Yt in (Ω, E), where k = dist(Xt, Yt). By our hypothesis Eq. (1),

E
[
dist

(
Z

(j)
t+1, Z

(j+1)
t+1

)
| Z(j)

t , Z
(j+1)
t

]
≤ (1− α) · dist

(
Z

(j)
t , Z

(j+1)
t

)
.

It follows by the Triangle Inequality that

E [dist(Xt+1, Yt+1) | Xt, Yt] ≤
k−1∑
j=0

E
[
dist

(
Z

(j)
t+1, Z

(j+1)
t+1

)
| Z(j)

t , Z
(j+1)
t

]

≤ (1− α) ·
k−1∑
j=0

dist
(
Z

(j)
t , Z

(j+1)
t

)
= (1− α) · dist(Xt, Yt). (Shortest Path)
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3.1 Application: Sampling Proper Colorings
In this section, we present a neat application of path coupling to sampling proper colorings in
graphs. Let G = (V,E) be a graph of maximum degree ∆, and let q ∈ N be a given number of
colors. A (proper) q-coloring of G is an assignment χ : V → [q] such that χ(u) ̸= χ(v) for all
{u, v} ∈ E. Let µ be the uniform distribution over all proper q-colorings, which is a subset of
[q]V . Further recall that Glauber dynamics is given by the following Markov chain (specialized to
colorings in this case): If the current coloring is χ : V → [q], then:

• select a uniformly random vertex v ∈ V ,

• select a uniformly random color c currently available to v, i.e. uniformly among [q] \ {χ(u) :
u ∼ v},

• and update χ(v)← c.

Fact 3.3. If q ≥ ∆+ 2, then Glauber dynamics is ergodic. Furthermore, if q = ∆+ 1, then there
exists a graph of maximum degree ∆ such that Glauber dynamics is not connected.

We prove this in Appendix A. Thus, we will typically require q ≥ ∆+2. Note that in this regime,
one can always find a coloring via the simple greedy algorithm. We prove the following.

Theorem 3.4 ([Jer95]). Suppose q ≥ 2∆+1. Then Glauber dynamics with stationary distribution
µ mixes in O(∆n log(n/ϵ))-steps.

Before we prove the theorem, we mention some complementary results and conjectures.

Theorem 3.5 ([Gal+14; GŠV15; GŠV16]; building on [Sly10; SS14]). If q ≤ ∆ (even), then there
is no FPRAS for approximately counting proper q-colorings unless NP = RP.

This result says that under standard complexity-theoretic hypotheses, a condition like q ≥ ∆+1
is necessary. The following conjecture postulates that this is sharp, i.e. there is a computation
phase transition at q = ∆+ 1.

Conjecture 1. If q ≥ ∆+1, then there is an FPRAS for approximately counting proper q-colorings.
Furthermore, if q ≥ ∆+ 2, then Glauber dynamics mixes in O(n log n) steps.

This is one of the major open problems in the field of approximate counting and sampling.

Proof of Theorem 3.4. We use path coupling w.r.t. Hamming distance, where two colorings χ, χ′

are adjacent if they differ in the color of exactly one vertex, say w. We now couple the transitions
P(χ→ ·) and P(χ′ → ·).

• We select the same uniformly random vertex v.

• We now attempt to couple the update colors χ(v) ← c, χ′(v) ← c′ used. There are a few
cases to consider depending on the vertex v chosen.

(1) Suppose v = w. Since this disagreeing vertex is unique, {χ(u) : u ∼ v} = {χ′(u) : u ∼
v}, and so we can perfectly couple the update colors, i.e. c = c′ with probability 1. This
is the best case, since after the update, the Hamming distance decreases by 1 and the
two colorings no longer disagree anywhere.

(2) Suppose v /∈ N(w) ∪ {w}. Since no neighbor of v is the vertex of disagreement, {χ(u) :
u ∼ v} = {χ′(u) : u ∼ v} still. So we can again perfectly couple c, c′. This is a good
case, since after the update, the Hamming distance doesn’t change.

(3) Suppose v ∈ N(w). Let L = [q] \ {χ(u) : u ∼ v, u ̸= w}. Then the set of available colors
to v w.r.t. χ is L\{χ(w)}, while the set of available colors w.r.t. χ′ is L\{χ′(w)}. Our
goal is to optimally couple c ∼ Unif(L \ {χ(w)}) and c′ ∼ Unif(L \ {χ′(w)}).

– This can be done optimally if χ(w), χ′(w) /∈ L, since both sets are L itself.
– If χ′(w) /∈ L but χ(w) ∈ L, then we first sample c ∼ Unif(L \ {χ(w)}), and

with probability |L|−1
|L| , we take c′ = c; with the remaining 1

|L| probability, we
take c′ = χ(w). We employ essentially the same coupling in the symmetric case
χ(w) /∈ L, χ′(w) ∈ L.
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– If χ(w), χ′(w) ∈ L, then we first sample c uniformly. If c ̸= χ′(w), then set c′ = c.
If c = χ′(w), then set c′ = χ(w).

We now analyze contraction. For χt, χ
′
t differing at a single vertex (dist(χt, χ

′
t) = 1), using the

fact that |L| ≥ q −∆+ 1 to analyze (3),

E
[
dist(χt+1, χ

′
t+1) | χt, χ

′
t

]
≤ n−∆− 1

n︸ ︷︷ ︸
Case (2)

+
∆

n
· 2 · 1

q −∆
+

∆

n
· q −∆− 1

q −∆︸ ︷︷ ︸
Case (3)

= 1− q − 2∆

q −∆
· 1
n
.

It follows that we have contraction as long as q ≥ 2∆ + 1. Since the diameter of the space of
colorings is at most n w.r.t. Hamming distance, and q−∆

q−2∆ ≤ ∆+1 for all q ≥ 2∆+1, the theorem
follows.
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A Unfinished Proofs
Proof of Fact 3.3. Aperiodicity follows immediately since PGD(χ → χ) > 0 for all colorings (the
current color χ(v) assigned to v is always available to v). To prove irreducibility, we must show
that for every pair of colorings χ, χ′, there is a sequence of Glauber moves which changes χ into
χ′. Order the vertices v1, . . . , vn arbitrarily. Suppose for some k ∈ [n], we have that χ(vj) = χ′(vj)
for all 1 ≤ j ≤ k. We will update χ via Glauber moves so that χ(vj) = χ′(vj) for all 1 ≤ j ≤ k+1.
Once k reaches n by induction, we’ll have χ = χ′.

Suppose χ(vk+1) ̸= χ′(vk+1). We have two cases:

(A) If χ′(vk+1) is available to vk+1 w.r.t. χ (i.e. no neighbor of u has χ(u) = χ′(vk+1)), then we
can simply update χ(vk+1)← χ′(vk+1).
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(B) Otherwise, some neighbor u of vk+1 satisfies χ(u) = χ′(vk+1). The high-level idea is to
recolor u so that χ(u) ̸= χ′(vk+1), while maintaining our invariant. Once we do this for all
such neighbors u, χ′(vk+1) becomes available to vk+1 and we can reduce to (A).

Since χ′(u) ̸= χ′(vk+1) by the coloring constraint, it must be that χ(u) ̸= χ′(u). In particular,
u = vℓ for some ℓ > k + 1, so we’re freely allowed to change the color of u without violating
our invariant that χ(vj) = χ′(vj) for all 1 ≤ j ≤ k. This is true for any such neighbor u.
Since q ≥ ∆+ 2, there is always some other color c ̸= χ′(vk+1) which is available to u w.r.t.
χ. Hence, for all u ∼ vk+1 such that χ(u) = χ′(vk+1), we can recolor χ(u) ← c ̸= χ′(vk+1).
Thus, we’ve used Glauber moves to change χ into a coloring such that χ(u) ̸= χ′(vk+1) for
all u ∼ vk+1. Once we have reached such a coloring, χ′(vk+1) becomes available to vk+1, so
we can update χ(vk+1) and increase k.

This shows ergodicity when q ≥ ∆+2. Now suppose q = ∆+1. Consider the complete graph K∆+1

on ∆ + 1 vertices. This graph has maximum degree ∆. Furthermore, if χ is a (∆ + 1)-coloring,
then all colors in the palette must be used. Hence, for any vertex v ∈ V , the only available color
to v is its current color χ(v). In other words, Glauber dynamics cannot move between the (∆+1)!
many possible colorings.
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