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In this lecture, we return to variational approximations of mean-field type. The focus here is
on applications to large deviations problems. One should have in mind some “simple” probability
measure ν on some “simple” state space Ω (e.g. Unif{±1}n), and some concrete function f of interest
which is nonlinear. The goal is to control the upper tail probability Prx∼ν [f(x) ≥ (1 + δ)Eν [f ]]
to leading order for constant δ > 0. We previously saw how to bound this assuming there is
a reversible local Markov chain w.r.t. ν which satisfies a modified log-Sobolev inequality. This
method is “robust” in the sense that it holds simultaneously for all 1-Lipschitz functions, but in
general, it does not give the sharpest bounds for specific test functions encountered in applications.
Here, we use variational principles to go beyond these limitations.

1 Revisiting the Naïve Mean-Field Approximation
For convenience, we again consider probability measures over the family 2U of all subsets of some
ground set U (e.g. [n]). We endow this space with some “background” probability measure ν (e.g.
Unif2U ), which we leave unspecified for a moment. For a function f : 2U → R (the “Hamiltonian”),
recall that the Gibbs Variational Principle states that

Fν(f)
def
= logEν

[
ef
]
= sup

ζ
{Eζ [f ]− DKL (ζ ∥ ν)} , (1)

where the supremum over all probability measures ζ over 2U . Since 2U is a product space, if ν is a
product measure (e.g. the p-biased measure νp(S)

def
= p|S|(1− p)|U\S| for p ∈ [0, 1]), then it makes

sense to restrict the above convex program to product measures, i.e.

FNMF
ν (f)

def
= sup

m∈[0,1]U

{
Eπ(m)[f ]− DKL (π(m) ∥ ν)

}
, (2)

where π(m) denotes the unique product measure over 2U with coordinate marginals m (i.e.
PrS∼π(m)[i ∈ S] = mi). Recall that we say the naïve mean-field approximation is “correct” if
Fν(f)−FNMF

ν (f)
|U| ≤ o(1).

The relevance of this to large deviations is via the standard connection between concentration
phenomena and bounds on the moment generating function.

Lemma 1.1 (Informal). Assume Fν(s·f)−FNMF
ν (s·f)

|U| ≤ o(1) for all s > 0. Then

log Pr
S∼ν

[f(S) ≥ t] ≤ − inf
m∈[0,1]U

{
DKL (π(m) ∥ ν)

∣∣∣∣∣Eπ(m)[f ] ≥ t

}
+ o (|U|) . (3)

Note that DKL (π(m) ∥ ν) =
∑

i∈U

(
mi log

mi

νi
+ (1−mi) log

1−mi

1−νi

)
since both arguments are

product measures.

Proof. For every fixed parameter s > 0, we have

log Pr
S∼ν

[f(S) ≥ t] = log Pr
S∼ν

[
es·f(S) ≥ es·t

]
≤ logEν

[
es·f

]
− s · t. (Markov’s Inequality)
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Selecting the best choice of s and applying the Gibbs Variational Principle Eq. (1), we have

log Pr
S∼ν

[f(S) ≥ t] ≤ inf
s>0

sup
ζ

{s · Eζ [f ]− DKL(ζ ∥ ν)− s · t}

= sup
ζ

{
−DKL (ζ ∥ ν) + inf

s>0
{s · (Eζ [f ]− t)}

}
(von Neumann’s Minimax Theorem)

= − inf
ζ

{
DKL (ζ ∥ ν)

∣∣∣∣∣Eζ [f ] ≥ t

}
,

where in the final step, we used the fact that if Eζ [f ] < t, then the infimum over s > 0 yields
−∞. The application of the Minimax Theorem is legitimate at this level because of concavity
in ζ and convexity in s > 0. A more streamlined derivation of this bound is to simply note
that − log PrS∼ν [f(S) ≥ t] = DKL

(
ν·1f≥t

PrS∼ν [f(S)≥t]

∥∥ ν). Restricting to product measures π(m) and
applying the correctness assumption for naïve mean-field yields the claim.

Remark 1. The final claim regarding the mean-field assumption is not quite rigorous due to issues
of swapping infimum and supremum. In particular, concavity is lost in FNMF

ν (s · f). Nonetheless,
typically the proof technique establishing mean-field behavior also confirms Eq. (3). For instance,
Theorem 2.1 below shows that existence of low-entropy measure decompositions implies that one
does not lose much by restricting ζ to product measures (recall that low-entropy decompositions
of a very similar flavor were used in a previous lecture to establish mean-field behavior).

In light of Lemma 1.1, the hope is that we can obtain sharp “function aware” control on the
right-hand side of Eq. (3), perhaps up to additional additive losses of order o (|U|).

For intuition, note that an alternative interpretation of the approximation Eq. (3) is the
following. Consider the conditioned measure νf≥t(S) ∝ ν(S)1[f(S) ≥ t]; as observed earlier,
DKL (νf≥t ∥ ν) = − log PrS∼ν [f(S) ≥ t]. Now even in the regime where Eq. (3) holds, νf≥t need
not be literally close to ν in KL-divergence, i.e. DKL(νf≥t ∥ ν) ≤ o (|U|) can fail. This is simply
because the Hamiltonian f itself can be used as a distinguisher for the pair νf≥t, ν. Indeed, since
we’re in the large deviations regime, if Eν [f ] has order |U| and t = (1+ δ)Eν [f ] for constant δ > 0,
then

∣∣Eνf≥t
[f ]− Eν [f ]

∣∣ ≥ δ · Eν [f ] ≥ Ω (|U|).
However, Eq. (3) says that w.r.t. the specific “test function” ζ 7→ DKL(ζ ∥ ν), νf≥t is “in-

distinguishable” from some product measure π(m) (i.e. some exponential tilt of ν) satisfying
Eπ(m)[f ] ≥ t. In particular, what is true is that Eq. (3) is equivalent to νf≥t being close in
KL-divergence to some exponential tilt of ν (up to additive ±o (|U|) error).

Let us now see an interesting application to homomorphism densities in random graphs.

1.1 Application: Triangle Counts in G(n, p)

Fix a vertex set V = [n], let U =
(
V
2

)
, and let ν = νp be the p-biased measure νp(E) = p|E|(1 −

p)|(
V
2)\E| for each E ⊆

(
V
2

)
. The random pair G = (V,E) is the Erdös–Rényi random graph G(n, p)

with edge density p. Let

T (G)
def
= #

{
uvw ∈

(
V

3

)
: uv, vw, uw ∈ E

}
be the triangle count in G. Clearly, by linearity of expectation, EE∼νp

[T (G)] = p3
(
n
3

)
. Letting

t = (1 + δ)EE∼νp
[T (G)], we have the following large deviation bound, which was a longstanding

open problem in the study of random graphs.

Theorem 1.2 ([Aug20]; building on [CD16; LZ17; Eld18]). If n−1/2 log4 n ≪ p ≪ 1, then for
every δ > 0,

Pr
E∼νp

[
T (G) ≥ (1 + δ)p3

(
n

3

)]
= exp

(
−(1± o(1))min

{
δ2/3

2
,
δ

3

}
n2p2 log

1

p

)
.

Remark 2. The problem in the full range n−1 log n ≪ p ≪ 1 was recently resolved in [HMS22].
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Remark 3. Note that this equality is really a simultaneous upper and lower bound, each of which
is allowed 1 ± o(1) multiplicative error in the exponent. In this lecture, we only focus on upper
bounds for brevity.
Remark 4. If one were instead to apply the modified log-Sobolev inequality for Glauber dynamics
for νp, which has constant 1/

(
n
2

)
just via standard entropy tensorization for product measures,

then one would obtain something like

Pr
E∼νp

[
T (G) ≥ (1 + δ)p3

(
n

3

)]
≤ exp

(
−Cδ2n2p6

)
for some universal constant C > 0. This uses the fact that T is n-Lipschitz, since adding/deleting
an edge uv can only affect the presence/absence of the triangles {uvw : w ∈ V }. Conceivably, one
could optimize the constant C > 0, but the dependence on p and δ is not optimal.

We do not go into the full details of the proof here. The seminal papers [CD16; Eld18; EG18;
Aus19; Aug20; Aug21] developed general-purpose techniques for making Lemma 1.1 applicable to
problems like Theorem 1.2. For triangles in G(n, p), and k-cliques more generally, the variational
problem in Eq. (3) was then solved asymptotically in [LZ17; Bha+17]; note that they actually
gave a solution to this optimization problem for all 1/n ≪ p ≪ 1. We refer interested readers to
[Bha+20] for additional applications to arithmetic progressions in random subsets of Z/nZ, and
[CD16] for applications to exponential random graphs from social network analysis [LKR12].

2 On “Low-Complexity” Hamiltonians
In the rest of the lecture, we aim to give some indication of how to verify Eq. (3) holds. Our goal
is to control

Rν(f, t)
def
= inf

ζ

{
DKL (ζ ∥ ν)

∣∣∣∣∣Eζ [f ] ≥ t

}
by

RNMF
ν (f, t)

def
= inf

m∈[0,1]U

{
DKL (π(m) ∥ ν)

∣∣∣∣∣Eπ(m)[f ] ≥ t

}
up to small additive error. The fundamental idea is again decomposition. Previous approaches,
specialized to the random graph setting (see Section 1.1), leveraged various regularity results
of Szemerédi-type to formalize this theme. In this lecture, we go via measure decompositions,
following [Eld18; Aus19]. The following is a direct adaptation of a result we saw in the previous
lecture on the naïve mean-field approximation, although with a more stringent condition for the
component measures.

Theorem 2.1. Let f : 2U → R be some Hamiltonian, and ν be a product measure over 2U .
Suppose there are α, η > 0 (possibly depending on |U|) such that for every s > 0, we can decompose
µ(S) ∝ ν(S)es·f(S) as a mixture Eθ∼ξ

[
µ(θ)

]
, where ξ is a distribution over some auxiliary state

space I, and each component measure µ(θ) is again a distribution over 2U , such that the following
properties hold:

• “Low Entropy” Mixture: Eθ∼ξ

[
DKL

(
µ(θ) ∥ ν

)]
− DKL (µ ∥ ν) ≤ α.

• “Near-Product” Components: With 1 − o(1) probability over θ ∼ ξ, we have Eµ(θ) [f ] −
Eπ(µ(θ))[f ] ≤ η and Eµ(θ) [f ] ≥ Eµ[f ]− Õ(η). (Note that Eθ∼ξ

[
Eµ(θ) [f ]

]
= Eµ[f ].)

Then

Rν(f, t) ≤ RNMF
ν (f, t) ≤ Rν(f, t+ Õ(η)) + α.

We give a proof in Appendix A. In the setting of large deviations, one should think of t as
linear in dimension (e.g.

(
n
2

)
in the G(n, p) setting; see Section 1.1), while α, η are sublinear in

dimension so that they can be viewed as 1 ± o(1) multiplicative errors compared to t. The game
then becomes to find such decompositions, which would allow one to invoke Lemma 1.1. The
following is a pervasive theme in this line of research.
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Theme 2.2. If the Hamiltonian f satisfies a suitable “low-complexity” condition (e.g. as mea-
sured via its set of gradients), then such a decomposition in the style of Theorem 2.1 exists, and
Lemma 1.1 is applicable.

To illustrate this theme, we prove a decomposition theorem due to Austin [Aus19]. Throughout
this section, we let f : {±1}n → R be some fixed Hamiltonian over the Boolean cube, and let ν
be some fixed reference product measure over {±1}n (e.g. Unif{±1}n). Recall that the discrete
gradient for functions on {±1}n is defined via

∇f(σ) = [∂if(σ)]
n
i=1 ∈ Rn where ∂if(σ) =

f(σ−i,+1)− f (σ−i,−1)

2
. (4)

Note that we could have instead defined ∂if(σ) =
f(σ)−f(σ⊕i)

2 , but the above will be more conve-
nient because ∂if(σ) does not depend on σi. Along the lines of Theme 2.2, the resulting decom-
position will be “good” if the collection of all gradients {∇f(σ) : σ ∈ {±1}n} is “tame” in some
sense.

Definition 1. For a subset S ⊆ Rn and a parameter α > 0, define Coverα (S) to be the smallest
cardinality of any covering of S via subsets of Rn with ℓ1-diameter at most α.

Theorem 2.3 ([Aus19]). Suppose f satisfies the following “low-complexity” guarantee for some
parameters α, η > 0 (possibly depending on n):

logCoverα ({∇f(σ) : σ ∈ {±1}n}) ≤ η. (5)

Then the Gibbs measure µ(σ) ∝ ν(σ)ef(σ) admits a decomposition Eθ∼ξ

[
µ(θ)

]
such that H(ξ) ≤ η,

and for some collection of product measures {π(θ) : θ ∈ supp(ξ)},

Eθ∼ξ

[
DKL

(
µ(θ) ∥π(θ)

)]
< α+ η.

Remark 5. The final inequality is very useful as it allows one to control deviations for all Lipschitz
test functions simultaneously, including f itself. In particular, by Marton’s transport-entropy
inequality for product measures (see e.g. [GL10]; this is also a consequence of the modified log-
Sobolev inequality), we have

Eθ∼ξ

[
W1

(
µ(θ), π(θ)

)]
< α+ η,

where this Wasserstein distance is defined w.r.t. the Hamming metric on {±1}n.

2.1 Austin’s Approach via Dual Total Correlation
Perhaps motivated by a deeper examination of the (modified) log-Sobolev approach to large devi-
ations (see e.g. Remark 4), one approach towards Definition 1 is to exponentially tilt the reference
product measure ν in the direction of the various discrete gradients. This is related to the (mod-
ified) log-Sobolev inequality because the discrete gradients appear directly in the Dirichlet form
of Glauber dynamics, and as we will see in the proof, we will take advantage of the (modified)
log-Sobolev inequality for product measures. To formalize this, for any other probability measure
µ over {±1}n, define the dual total correlation [Han75] by

DTC(µ)
def
=

n∑
i=1

Eτ∼µ−i
[DKL (µ

τ
i ∥ νi)]− DKL (µ ∥ ν) . (6)

This quantity enjoys the following nice properties.

Fact 2.4 (Properties of DTC). • DTC(µ) ≥ 0 for every µ.

• The definition of DTC(µ) is independent of the choice of reference product measure ν.

• DTC(µ) may be alternatively expressed as

DTC(µ) = Eσ∼µ

[
DKL

(
π(σ) ∥ ν

)]
− DKL (µ ∥ ν) ,

where π(σ) is the unique product measure over {±1}n with marginals π
(σ)
i = µ

σ−i

i for all
σ ∈ {±1}n. Note that π(σ) = T∇f(σ)ν.
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The first claim is just approximate tensorization of entropy for product measures, which can be
proved inductively via standard methods. It is more or less the log-Sobolev inequality for product
measures. The second and third claims can be verified by direct calculation. One should think of
the first term in DTC(µ) as being the Dirichlet form of Glauber dynamics for ν evaluated at the
(log-)density of µ w.r.t. ν. We omit the proof for brevity.

The following is the main technical result of [Aus19].

Theorem 2.5 (Main Technical; [Aus19]). Suppose there is an α > 0 (possibly depending on n)
and a partition P of {±1}n satisfying the following condition:

∥∇f(σ)−∇f(σ′)∥1 < α, ∀σ, σ′ in the same part of P. (7)

Let ξ be the mixture measure on P induced by µ, i.e. ξ(P ) = µ(P ) for each part P ∈ P, and let
the component measures be given by conditioning, i.e. µ(P ) = µ | P for each part P ∈ P. Then
the following estimate holds:

DTC(µ) + EP∼ξ

[
Eσ∼µ(P )

[
DKL

(
µ(P ) ∥π(σ)

)]]
< H(ξ) + α. (8)

Let us first use this to prove Theorem 2.3.

Proof of Theorem 2.3. We take our decomposition to be the one furnished by Theorem 2.5 for an
appropriate choice of P. By the assumed metric entropy bound Eq. (5), there is a partition Q of the
collection of discrete gradients {∇f(σ) : σ ∈ {±1}n} into at most eη-many sets of ℓ1-diameter at
most α. Now let P =

{
(∇f)−1(Q) : Q ∈ Q

}
be the partition of {±1}n induced by pulling back the

partition Q w.r.t. the map σ 7→ ∇f(σ). We then take the product measure π(θ) for σ minimizing
DKL

(
µ(θ) ∥π(σ)

)
. The bound H(ξ) ≤ η just follows from the cardinality bound |P| ≤ eη and the

Maximum Entropy Principle, while the second follows from the conclusion of Theorem 2.5 and
nonnegativitiy of DTC(µ) (see Fact 2.4).

Remark 6. As observed in [Aus19], interestingly, Eq. (8) also implies that DTC(µ) < H(ξ) + α.
Since DTC(µ) is essentially the deficit in the log-Sobolev inequality for the input test function
f w.r.t. ν, this bound on DTC(µ) essentially says that “low-complexity Hamiltonians f ” nearly
saturate the log-Sobolev inequality. This is what Eldan refers to as a reverse log-Sobolev inequality
[Eld18]; see also [EL20] for the Gaussian case. This is also intimately related to stability estimates
for the log-Sobolev inequality (see e.g. [ELS20]).

2.2 Proof of Theorem 2.5
We will need the following modified chain rule for KL-divergence, which is a straightforward con-
sequence of the usual one. We omit the proof for brevity.

Lemma 2.6 (Modified Chain Rule). In the setting of Theorem 2.5, we have the identity

DKL (µ ∥ ν) = −H(ξ) + EP∼ξ

[
DKL

(
µ(P ) ∥ ν

)]
.

For a fixed part of the partition P ∈ P and a fixed σ ∈ {±1}n, we have

DKL

(
µ(P ) ∥π(σ)

)
=

[
DKL

(
µ(P ) ∥ ν

)
− DKL

(
π(σ) ∥ ν

)]
−
[
Eσ′∼µ(P ) [⟨∇f(σ), σ′⟩]− Eσ′∼π(σ) [⟨∇f(σ), σ′⟩]

]
by using the standard “change of measure trick” for KL-divergence. Averaging over σ ∼ µ(P ), and
then averaging again over P ∼ ξ, we obtain the following identity (after several applications of the
Law of Total Expectation)

EP∼ξ

[
Eσ∼µ(P )

[
DKL

(
µ(P ) ∥π(σ)

)]]
= EP∼ξ

[
DKL

(
µ(P ) ∥ ν

)]
− Eσ∼µ

[
DKL

(
π(σ) ∥ ν

)]
︸ ︷︷ ︸

(A)

− EP∼ξ

[
Eσ,σ′∼µ(P ) [⟨∇f(σ), σ′⟩]− Eσ∼µ(P ),σ′∼π(σ) [⟨∇f(σ), σ′⟩]

]︸ ︷︷ ︸
(B)

.

5



The left-hand side here is precisely the quantity in the left-hand side of Eq. (8) (except without
the DTC(µ) term). We bound (A) and (B) separately. The entropy term (A) can be rewritten
as (A) = H(ξ)− DTC(µ), which follows from Fact 2.4 and Lemma 2.6 by adding and subtracting
DKL(µ ∥ ν). (B) is already a difference of quantities involving gradients and so it is conceivable
we can apply our assumption Eq. (7). To formalize this, we claim that the following somewhat
curious identity holds for the second term in (B):

EP∼ξ

[
Eσ∼µ(P ),σ′∼π(σ) [⟨∇f(σ), σ′⟩]

]
= EP∼ξ

[
Eσ∼µ(P ) [⟨∇f(σ), σ⟩]

]
. (9)

Assuming the veracity of this identity, we have

(B) = EP∼ξ

[
Eσ,σ′∼µ(P ) [⟨∇f(σ)−∇f(σ′), σ′⟩]

]
≤ EP∼ξ

[
Eσ,σ′∼µ(P ) [∥∇f(σ)−∇f(σ′)∥1 · ∥σ

′∥∞]
]

(Hölder’s Inequality)

≤ α. (By Eq. (7), since σ, σ′ ∈ P for some part P ∈ P)

Putting this together with the previous observation on (A), the theorem follows. All that remains
is to justify Eq. (9). The key is to observe that for each individual coordinate i ∈ [n], we have

EP∼ξ

[
Eσ∼µ(P ),σ′∼π(σ) [∂if(σ) · σ′

i]
]
= EP∼ξ

[
Eσ∼µ(P ) [∂if(σ) · σi]

]
just by using π

(σ)
i = µ

σ−i

i and the fact that ∂if(σ) is independent of σi. Indeed, in both sides, the
overarching law of both σ and (σ−i, σ

′
i) is µ = EP∼ξ

[
µ(P )

]
, and we may replace ∂if(σ) with ∂if(σ

′)
in the left-hand side, for instance. Summing over all i ∈ [n] and using linearity of expectation yields
Eq. (9), and so we are done.
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Proof of Theorem 2.1. The proof is similar to before, except complicated by the hard constraint
that Eζ [f ] must exceed some threshold. The lower bound is trivial. For the upper bound, observe
that by the Maximum Entropy Principle, the variational problem for Rν(f, t + Õ(η)) is attained
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(
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≥−α
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[
DKL

(
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)]

≥ −α+ Eθ∼ξ

[
DKL

(
π
(
µ(θ)

)
∥ ν

)]
(Using DKL

(
µ(θ) ∥ ν

)
≥ DKL

(
π
(
µ(θ)

)
∥ ν

)
since ν is product)

≥ Pr
θ∼ξ

[
DKL

(
π
(
µ(θ)

)
∥ ν

)
≥ RNMF

ν (f, t)
]
· RNMF

ν (f, t). (Markov’s Inequality)

Now we use our second assumption on the component measures to lower bound the probability
that DKL

(
π
(
µ(θ)

)
∥ ν

)
exceeds RNMF

ν (f, t). Observe that

Pr
θ∼ξ

[
DKL

(
π
(
µ(θ)

)
∥ ν

)
≥ RNMF

ν (f, t)
]

≥ Pr
θ∼ξ

[
Eπ(µ(θ))[f ] ≥ t

]
≥ Pr

θ∼ξ

[
Eµ(θ) [f ]− Eπ(µ(θ))[f ] ≤ η andEµ(θ) [f ] ≥ t+ η

]
≥ 1− o(1). (Using the “near-product” assumption and Eµ[f ] ≥ t+ Õ(η))
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