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In the second half of the previous lecture, we built a deterministic approximate counter for the
number of bases of a matroid with simply exponential multiplicative error. In this lecture, we use
similar ideas to approximate the permanent of a nonnegative matrix and the mixed volumes of
convex bodies.

1 Deterministically Approximating the Permanent
Recall the permanent of a matrix A ∈ Cn×n is defined as

per(A)
def
=
∑
σ∈Sn

n∏
i=1

Ai,σ(i), (1)

where we write Sn ⊆ [n]n for the group of permutations σ : [n] → [n].

Theorem 1.1 ([Gur06]). There is a deterministic polynomial-time algorithm which outputs a
en-multiplicative approximation to per(A) for any nonnegative matrix A ∈ Rn×n

≥0 .

Remark 1. Note that the seminal work of Jerrum–Sinclair–Vigoda [JSV04] gives an FPRAS for
this problem. We also previously saw a quasipolynomial-time deterministic algorithm when A is
not too far from the all-ones matrix using Barvinok’s polynomial interpolation method.

We prove Theorem 1.1 using entropy and log-concavity ideas. In particular, as we mentioned
previously for matroid bases, one way to take advantage of the Donsker–Varadhan representation
of KL-divergence

DKL (ν ∥µ) = sup
f

{
Ex∼ν [f(x)]− logEx∼µ

[
ef(x)

]}
(2)

is to view the measure ν of interest as a restriction of a “nicer” measure µ on a possibly enlarged
state space. For the permanent, we can take µ to be the product measure

⊗n
i=1 µi over [n]n, where

µi(j) ∝ Aij for each j ∈ [n]. Clearly, µ(σ) ∝
∏n

i=1 Ai,σ(i) for every function σ : [n] → [n], including
those which are not permutations. Then ν is the restriction of µ to the set of permutations
Sn ⊆ [n]n. This observation (plus some simple rearranging) establishes the following convex
programming interpretation of the permanent.

Fact 1.2 (Permanent as a Convex Program). Let A ∈ Rn×n
≥0 be any nonnegative matrix. Let ν be

the probability measure over Sn ⊆ [n]n given by ν(σ) ∝
∏n

i=1 Ai,σ(i). Then

log per(A) = inf
f :[n]n→R

log

 ∑
σ∈[n]n

ef(σ)
n∏

i=1

Ai,σ(i)

−
∑
σ∈Sn

ν(σ)f(σ)

 . (3)

The hope is then to find a nice subclass of functions f for which the optimization in Eq. (3)
becomes tractable. We want this class of functions to be rich enough so that we do not lose too
much in the restriction. At the same time, we want

∑
σ∈[n]n ef(σ)

∏n
i=1 Ai,σ(i) and

∑
σ∈Sn

ν(σ)f(σ)
to be efficiently computable.

Perhaps a natural choice is for f to be linear, i.e. f(σ) =
∑n

i=1 wi,σ(i) for some matrix of weights
w ∈ Rn×n. The first term is still easy to compute, but unfortunately,

∑
σ∈Sn

ν(σ)
∑n

i=1 wi,σ(i)

still seems nontrivial since it depends on the marginal probabilities Prν [σ(i) = j] of matching i to
j for all i, j ∈ [n]. However, if we further restrict w to be of the form 1v⊤, then f(σ) =

∑n
i=1 vσ(i)

is constant over permutations, and given by ⟨v,1⟩. The following result of Gurvits bounds the
approximation error for this nice restriction.
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Theorem 1.3 ([Gur06]). Consider the following restriction of Eq. (3) to the functions f of the
form f(σ) =

∑n
i=1 vσ(i) over [n]n, for some v ∈ Rn:

FCap(A)
def
= inf

v∈Rn

log

 n∏
i=1

n∑
j=1

Ai,je
vj

−
n∑

j=1

vj

 . (4)

Then

log per(A) ≤ FCap(A) ≤ log

(
nn

n!

)
+ log per(A). (5)

Let us first discuss how Theorem 1.3 yields an elementary proof of the van der Waerden con-
jecture on the permanent of doubly stochastic matrices. These are nonnegative matrices A ∈ Rn×n

≥0

such that its row sums and column sums are all 1. The following corollary gives a flavor of how
these types of inequalities can be applied to problems in combinatorics.

Corollary 1.4 (Resolution of van der Waerden’s Conjecture; [Gur06]). For every doubly stochastic
matrix A ∈ Rn×n

≥0 , we have n!
nn ≤ per(A) ≤ 1.

Note that both bounds are tight; the upper bound is attained by the identity matrix, while
the lower bound is attained by the normalized all-ones matrix 1

n11
⊤. This was first established

independently by Egorychev and Falikman [Ego81; Fal81].

Proof of Corollary 1.4. By Theorem 1.3, it suffices to show that FCap(A) = 1 for all doubly stochas-
tic A. For this, we claim that v = 0 achieves the optimal objective value in FCap(A). Plugging
this in then yields the desired equality FCap(A) = 1.

To see that v = 0 is optimal, we just need to verify first-order stationarity, since the objective
of Eq. (4) is smooth and convex. Observe that the partial derivative of the objective w.r.t. vk can
be written as

−1 +

n∑
i=1

Ai,ke
vk∑n

j=1 Ai,jevj
.

Plugging in v = 0 and using the fact that A is doubly stochastic shows that the gradient is zero
and so we’re done.

We postpone the proof of Theorem 1.3 for a moment, as we will eventually give a treatment
which also handles mixed volumes. We discuss the volume polynomial next.

2 Deterministically Approximating Mixed Volumes

Let K1, . . . ,Km ⊆ Rn be a collection of convex bodies. For two sets A,B ⊆ Rn, write A + B
def
=

{x + y : x ∈ A, y ∈ B} for their Minkowski sum. Similarly, write λA
def
= {λx : x ∈ A} for the

dilation of A. A well-known theorem of Minkowski says that the function

(λ1, . . . , λm) 7→ Vol

(
m∑
i=1

λiKi

)
(6)

on Rm
≥0 agrees with a homogeneous polynomial of degree-n over all of Rm. In particular, it may

be expressed as

m∑
i1,...,in=1

V (Ki1 , . . . ,Kin) ·
n∏

j=1

λij ,

where the coefficients V (Ki1 , . . . ,Kin) are known as the mixed volume between the bodies Ki1 , . . . ,Kin .
These coefficients encode a rich set of fundamental geometric quantities such as the surface area
and mean width of a convex body. Perhaps surprisingly, they also encode many combinatorial
quantities (e.g. linear extensions of a poset, and as it turns out, the permanent of a nonnega-
tive matrix), and have many applications; see e.g. [Sta81; Sta89; Gur10; CP21; CP22]. Finally,
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the mixed volumes satisfy a number of fascinating properties, including the famous Alexandrov–
Fenchel inequalities. This is a vast strengthening of the Brunn–Minkowski theory, which says that
the volume polynomial Eq. (6) is log-concave.

Given their central importance, a natural question is whether or not we can estimate these
coefficients. It turns out we can (at least up to a simply exponential multiplicative factor), using
the same technique as what we use for the permanent. The following is the analog of Theorems 1.1
and 1.3 combined into one statement.

Theorem 2.1 ([Gur09]). Let K = (K1, . . . ,Kn) be a tuple of n convex bodies in Rn, and define

VCap(K)
def
= inf

v∈Rn

{
log Vol

(
n∑

i=1

eviKi

)
−

n∑
i=1

vi

}
. (7)

Then

log V (K) ≤ VCap(K) ≤ log

(
nn

n!

)
+ log V (K) ,

and there is a deterministic polynomial-time algorithm for estimating V (K) up to a multiplicative
factor of nn

n! ≈ en.

Remark 2. There are some technicalities regarding efficient computation of Eq. (7), although these
are essentially resolved by the well-known FPRAS for computing the volume (and surface area) of
any convex body. See [Gur09] for more details.

Remark 3. One can show that V (K) admits an exact variational formulation similar to Eq. (3)
since the mixed volume V (K) is invariant under permutations. For instance, one can define a
distribution over [n]n given by µ(σ) ∝ V

(
Kσ(1), . . . ,Kσ(n)

)
, etc.

3 Estimating Coefficients of Log-Concave Polynomials
Computing the permanent and mixed volume are examples of a much more general problem.

Problem 1. Let p be a multivariate polynomial with nonnegative coefficients. Assuming we can
(approximately) evaluate p, when can we estimate the coefficients of p?

Of course, this question only makes sense if p is given as input not as a list of coefficients, but
via other means (e.g. in factorized form like Eq. (4), or via membership oracles like Eq. (7)). We
show that log-concavity of p on Rn

≥0 is enough to approximate coefficients up to a multiplicative
error of nn

n! . The following theorem encompasses Theorems 1.3 and 2.1 as special cases, where
p(z) =

∏n
i=1

∑n
j=1 Ai,jzj and p(z) = Vol (

∑n
i=1 ziKi) respectively.

Theorem 3.1 ([Gur06]). Let p(z) be a degree-n homogeneous polynomial over the variables z1, . . . ,zn,
and assume p has nonnegative coefficients. Define the (Gurvits) capacity1 by

Cap1(p)
def
= inf

z>0

p(z)

z1 · · · zn
. (8)

If p and all of its partial derivatives are log-concave over Rn
≥0, then

∂1p ≤ Cap1(p) ≤
nn

n!
· ∂1p

We refer interested readers to [KKO21] for applications to the metric traveling salesperson
problem (metric TSP), [GL21b; BLP23] for some applications in combinatorics, [Bur+18] for
connections to operator scaling, and [GL21a] for recent developments. Again, by instantiating
Theorem 3.1 with p(z) =

∏n
i=1

∑n
j=1 Ai,jzj and p(z) = Vol (

∑n
i=1 ziKi) respectively, taking log-

arithms, and applying the change of variables zi = evi for all i ∈ [n], we recover Theorems 1.3
and 2.1.

1One can also define a Gurvits capacity for each monomial zκ def
=

∏n
i=1 z

κi
i in the support of p via Capκ(p)

def
=

infz>0
p(z)
zκ .
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Proof of Theorem 3.1. The first inequality ∂1p ≤ Cap1(p) holds simply because ∂1p is the coeffi-
cient of z1 · · · zn, and p has nonnegative coefficients. The heart of the matter is the upper bound.
Rearranging, this is equivalent to the claim that

sup
z>0

{
(∂1p) · z1 · · · zn

p(z)

}
≥ n!

nn
.

One can interpret the left-hand side probabilistically as looking at the probability mass of Sn ⊆ [n]n

w.r.t. the distribution over [n]n specified by the coefficients of p, maximized over all possible
exponential tilts.

Let us now do a simple telescoping trick, which corresponds probabilistically to decomposition
as a product of conditional marginals. For each k = 1, . . . , n, define the polynomials

qk(z1, . . . ,zk)
def
=
(
∂zk+1

· · · ∂znp
)
(z1, . . . ,zk, 0, . . . , 0).

Note that differentiation (resp. setting zk+1 = · · · = zn = 0) filters out all monomials zκ of p such
that κj = 0 (resp. κj > 1) for some j = k + 1, . . . , n. Furthermore, each qk is log-concave over
Rk

≥0, and homogeneous of degree-k. Then

sup
z>0

{
(∂1p) · z1 · · · zn

p(z)

}
= sup

z>0

{
n∏

k=1

zk · qk−1(z1, . . . ,zk−1)

qk(z1, . . . ,zk)

}
.

We will prove that for each k = 1, . . . , n and every fixed z1, . . . ,zk−1 > 0,

sup
zk>0

{
zk · qk−1(z1, . . . ,zk−1)

qk(z1, . . . ,zk)

}
≥
(
k − 1

k

)k−1

.

Taking a product over all k clearly yields the desired claim. To establish this inequality, note that
since we have fixed z1, . . . ,zk−1 as constants, we have a univariate log-concave polynomial ℓ of
degree-k in the variable zk, and our goal is to show that

sup
zk>0

{
zk · ℓ′(0)
ℓ(zk)

}
≥
(
k − 1

k

)k−1

. (9)

For convenience, we establish a lower bound of 1/e instead, which is weaker but more conve-
nient.2 This is established in Lemma 3.2 below. A proof of the more refined bound is provided in
Appendix A.

Lemma 3.2. Let ℓ be a univariate polynomial with nonnegative coefficients. If ℓ is log-concave
over R≥0, then3

1 ≥ sup
z>0

{
z · ℓ′(0)
ℓ(z)

}
≥ 1

e
.

Proof. Since z · ℓ′(0) is the degree-1 monomial in ℓ and all coefficients of ℓ are nonnegative, the
first inequality is immediate. For the second, observe that concavity of log ℓ(z) implies that

log ℓ(z) ≤ log ℓ(0) +
ℓ′(0)

ℓ(0)
· z, ∀z > 0.

It follows that

log sup
z>0

{
z · ℓ′(0)
ℓ(z)

}
≥ sup

z>0

{
log

(
ℓ′(0)

ℓ(0)
· z
)
− ℓ′(0)

ℓ(0)
· z
}

= log sup
x>0

{
xe−x

}
= −1,

which yields the claim after exponentiating both sides.
2The sharper inequality can be proved by using the fact that log-concavity of p is equivalent to concavity of p1/n

by n-homogeneity.
3One should be slightly careful about what happens when e.g. ℓ(z) = zk. The more precise inequality is that

infz>0
ℓ(z)
z

≥ ℓ′(0) ≥ 1
e
infz>0

ℓ(z)
z

.
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4 Conclusion
Perhaps one way to give a unified view of the variational and entropy-based ideas we saw in the past
few lectures is to observe that combining both the Gibbs Variational Principle and the Donsker–
Varadhan representation of KL-divergence, we have that for any background probability measure
µ (e.g. uniform) over some ambient domain Ω (e.g. {±1}n), and any Hamiltonian f : Ω → R,

logEµ

[
ef
]
= inf

g:Ω→R
sup
ν

{Eν [f − g] + logEµ [e
g]} . (10)

Note that we can exchange the order of infg and supν by von Neumann’s Minimax Theorem.
One can restrict the choice of g or ν in this “saddle-point” formulation to make it tractable. This
captures almost all of the examples we have seen.

• Naïve Mean-Field: Ω = {±1}n, µ = Unif{±1}n, and f is given as input. In Eq. (10), we
let g be arbitrary, and restrict ν to be a product measure independently of g.

• Anari–Oveis Gharan–Vinzant: Ω = 2[n], µ = Unif2[n], and f restricts the domain to
bases of the input matroid (i.e. f = −∞·1B). In Eq. (10), we let ν be arbitrary, and restrict
g to be a linear form independently of ν.

• Gurvits Capacity: Ω = [n]n, µ is a “natural” log-concave measure (e.g. µ =
⊗n

i=1 µi

where µi(j) ∝ Aij in the case of permanent), and f restricts the domain to permutations
(i.e. f = −∞ · 1Sn

). In Eq. (10), we let ν be arbitrary, and restrict g to a special type of
linear form: g(σ) =

∑n
i=1 vσ(i) for some v ∈ Rn.

Note that in all of these examples, we made a severe restriction on one of g, ν, and let the other
be arbitrary.

4.1 Open Problems
We conclude with some open problems.

Problem 2. Does there exist a deterministic polynomial-time algorithm for estimating per(A) up
to (1±ϵ)n-multiplicative error for any nonnegative matrix A ∈ Rn×n

≥0 and any fixed constant ϵ > 0?
Similarly, does there exist such an algorithm for estimating mixed volumes? For the latter, Gurvits
conjectured that no FPRAS exists [Gur09].

The following question was raised in [Ris16].

Problem 3. For spin systems in “high temperature” (e.g. when Glauber dynamics mixes rapidly),
is there an FPTAS for computing the partition function based on convex programming?
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A Proof of Eq. (9)
In the above proof of Theorem 3.1, we only used log-concavity of p to deduce en-multiplicative
approximation. However, since p is also n-homogeneous, the function p1/n is also concave. This
is proved in Lemma A.1. Knowing this, the next observation is to use concavity of q

1/k
k and

Lemma A.2 below to establish Eq. (9), with the tighter
(
k−1
k

)k−1
lower bound. We prove each of

Lemmas A.1 and A.2 in turn.

Lemma A.1. Let p(z) be a degree-n homogeneous polynomial4 with nonnegative coefficients in m
variables z1, . . . ,zm. Then the following are equivalent:

• p1/n is concave over Rm
≥0.

• p is log-concave over Rm
≥0.

4It is not essential that the function be a polynomial.
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• For every z ∈ Rm
≥0, ∇2p(z) has at most one positive eigenvalue.

• p is quasiconcave over Rm
≥0, i.e. the superlevel sets Lt

def
= {z ∈ Rm

≥0 : p(z) ≥ t} are convex.

Proof Sketch. One can show that the first item implies the second item just by comparing ∇2p1/n(z)

and ∇2 log p(z). The second item implies the third since ∇2 log p(z) = p(z)·∇2p(z)−∇p(z)∇p(z)⊤

p(z)2 is
negative semidefinite by assumption, and we are subtracting a positive semidefinite rank-1 ma-
trix from ∇2p(z). We show that the third item implies concavity of p1/n by taking advantage of
homogeneity.

Recall that in the previous lecture on log-concave polynomials, we established that a symmetric
matrix A ∈ Rm×m

≥0 with nonnegative entries has at most one positive eigenvalue if and only if for

every v ∈ Rm
≥0 and x ∈ Rm,

(
x⊤Ax

)
·
(
v⊤Av

)
≤
(
x⊤Av

)2. In particular, for a fixed z ∈ Rm
≥0,

letting x ∈ Rm be an arbitrary test vector and taking v = z itself, we have by assumption that(
x⊤ · ∇2p(z) · x

)
·
(
z⊤ · ∇2p(z) · z

)
≤
(
x⊤ · ∇2p(z) · z

)2
.

By n-homogeneity of p, we have ∇2p(z) ·z = (n−1)∇p(z) and z⊤ ·∇2p(z) ·z = n(n−1)p(z); this
is Euler’s Homogeneous Function Theorem. Rearranging and using the fact that x ∈ Rm, z ∈ Rm

≥0

were arbitrary, the above exactly says that ∇2p1/n(z) ⪯ 0 for all z ∈ Rm
≥0, i.e. p1/n is concave over

Rm
≥0.

Now let us establish the equivalence of these with quasiconcavity. Clearly, p1/n being concave
implies quasiconcavity. For the converse, let x,y ∈ Rm

≥0 and 0 ≤ λ ≤ 1 be arbitrary. If it were the
case that p(x) = p(y) = t for some t ∈ R≥0, then we would immediately obtain

p(λx+ (1− λ)y)1/n ≥ t1/n = λp(x)1/n + (1− λ)p(y)1/n,

since x,y ∈ Lt implies λx + (1 − λ)y ∈ Lt by convexity of Lt. At this point, we haven’t used
homogeneity yet. To handle the general case, the trick is to first rescale so that the analysis in
the special case p(x) = p(y) becomes applicable. Write α = p(x)−1/n and β = p(y)−1/n. Then
p(αx) = p(βy) = 1, and so by the above analysis, p1/n evaluated at any convex combination of
αx, βy is lower bounded by 1. In particular, with weights λ/α

λ/α+(1−λ)/β and (1−λ)/β
λ/α+(1−λ)/β , we see

that

p

(
λx+ (1− λ)y

λ
α + 1−λ

β

)1/n

≥ 1,

which, after applying homogeneity again as well as the definition of α, β, amounts to

p(λx+ (1− λ)y)1/n ≥ λ

α
+

1− λ

β
= λp(x)1/n + (1− λ)p(y)1/n.

Lemma A.2 (Sharpening of Lemma 3.2). Let ℓ be a degree-k univariate polynomial with nonneg-
ative coefficients. If ℓ1/k is concave over R≥0, then

1 ≥ sup
z>0

{
z · ℓ′(0)
ℓ(z)

}
≥
(
k − 1

k

)k−1

.

Proof. We follow the proof of Lemma 3.2. Again, the upper bound is immediate. For the lower
bound, concavity of ℓ1/k implies that

ℓ1/k(z) ≤ ℓ1/k(0) +
ℓ′(0)

ℓ(0)
· ℓ

1/k(0)

k
· z,

or equivalently,

1

ℓ(z)
≥ 1

ℓ(0)
·
(
1 +

ℓ′(0)

ℓ(0)
· z
k

)−k

.

It follows that

sup
z>0

{
z · ℓ′(0)
ℓ(z)

}
≥ sup

z>0

{
ℓ′(0) · z
ℓ(0)

·
(
1 +

ℓ′(0)

ℓ(0)
· z
k

)−k
}

= sup
x>0

{
x
(
1 +

x

k

)−k
}

=

(
k − 1

k

)k−1

.

7


	Deterministically Approximating the Permanent
	Deterministically Approximating Mixed Volumes
	Estimating Coefficients of Log-Concave Polynomials
	Conclusion
	Open Problems

	Proof of eq:capacity-single-step

