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In the previous lecture on the naïve mean-field approximation, we approximated the free energy
by restricting the class of probability measures in Gibbs Variational Principle. This gives us a lower
bound on the free energy whose approximation error was controlled via measure decompositions.
In this lecture, we do we opposite. We relax the optimization problem to include objects which
are not bonafide distributions globally. We show how to do this in a principled way using convex
programming hierarchies. In the second half of the lecture, we take the dual perspective to the
Gibbs Variational Principle, and design deterministic algorithms for estimating the number of bases
of a matroid.

1 Relaxing to Pseudo-Distributions
Again, we focus on distributions over the Boolean cube {±1}n for convenience. Let f : {±1}n → R
be a function, which is the Hamiltonian defining the associated Gibbs measure µ(σ) ∝ ef(σ). We
recall the following standard fact from analysis of Boolean functions.

Fact 1.1. Let f : {±1}n → R be an arbitrary function. Then there is a unique multiaffine
polynomial

∑
S⊆[n] f̂(S)

∏
i∈S xi which agrees with f on {±1}n. The numbers f̂(S) are the Fourier

coefficients of f . We write supp(f)
def
= {S ⊆ [n] : f̂(S) ̸= 0} for the support of f , and deg(f)

def
=

maxS∈supp(f) |S| for the degree of f .

We typically think of f as being a low-degree function, i.e. it is a linear combination of low-
degree monomials (e.g. f is quadratic, corresponding to Ising models). This is the most relevant
setting for statistical physics applications, since f should be “local” in some sense.

Now recall that by Gibbs Variational Principle, the free energy can be written as the convex
program

F = F(f) def
= log

∑
σ∈{±1}n

ef(σ) = sup
ν
{Eν [f ] +H(ν)} , (1)

where the supremum is over all probability measures ν over {±1}n. In general, it is intractable
write down ν. One way to make things tractable is to relax the constraint that ν be a genuine
probability measure. However, in order for this to have any chance of working, we need to ensure
that both quantities Eν [f ] and H(ν) still make sense in the relaxation; if they do not, we need
to find “good” surrogates for them. Ignoring H(ν) for the moment, “locality/low-degreeness” of f
already suggests a natural relaxation, since the expectation of a low-degree function only requires
knowledge of the low-degree moments of ν.

Definition 1 (Pseudo-Distribution). For a downwards closed1 family of subsets F ⊆ 2[n], a F -
pseudo-distribution over {±1}n is a collection p̃ = {p̃S}S∈F of probability distributions p̃S over
{±1}S satisfying the following local consistency relations:

p̃S(τ) = Pr
σ∼p̃T

[σS = τ ] , ∀S, T ∈ F s.t. S ⊆ T, ∀τ : S → {±1}. (2)

The degree of the pseudo-distribution is defined as maxS∈F |S|.
1This means that if T ∈ F and S ⊆ T , then S ∈ F .
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Remark 1. This notion of locally consistent collections of local probability distributions makes
sense for any product space, e.g. [q]n.

The benefit of Definition 1 is that a F -pseudo-distribution of degree-k only has
∑

S∈F 2|S| ≤
nO(k) parameters, which is polynomial for constant k. Furthermore, the set of F -pseudo-distributions
is a polytope whose constraints are specified by Eq. (2) (plus nonnegativity and normalization for
each marginal p̃S). If k ≤ O(1), there are only polynomially many such constraints, and so we can
efficiently optimize convex/concave functions over degree-O(1) pseudo-distributions.

Clearly, given a genuine probability distribution µ over {±1}n, the collection of marginals
{µS}S∈F is a F -pseudo-distribution over {±1}n for every downwards closed family F ⊆ 2[n].
Hence, the set of F -pseudo-distributions fully contains the set of valid probability distribution
over {±1}n. In general, this containment is strict; see e.g. Example 1.

Now to each F -pseudo-distribution p̃ comes with an associated pseudo-expectation operator
Ẽ = Ẽp̃ which acts on (multiaffine) polynomials (see Fact 1.1) f(x) =

∑
S⊆[n] cS

∏
i∈S xi satisfying

supp(f) ⊆ F :

Ẽ [f ] =
∑
S∈F

cS · EσS∼p̃S

[∏
i∈S

σi

]
. (3)

Theme 1.2. Relax Eq. (1) to optimizing over F -pseudo-distributions for some “nice/low-degree”
(and downwards closed) F ⊆ 2[n].

Of course, we have neglected the entropy term H(ν), which is no longer well-defined for F -
pseudo-distributions. We will see a couple ways of remedying this.

1.1 Pairwise Interactions and the Bethe Approximation
A natural approach to defining a “pseudo-entropy” functional for F -pseudo-distributions is to sum
up the entropies of each of the marginals. This is not quite correct due to “double counting”
issues, but morally, this approach is what gives rise to the Bethe approximation in the context of
models with pairwise interactions. To illustrate it, we consider the very special case where f is the
quadratic form w.r.t. the adjacency matrix of some graph G = (V,E), and µ is the corresponding
Ising model; note that by Remark 1, everything we will say here extends to any q-state spin system.
Since f is quadratic, let us consider degree-2 pseudo-distributions.

Definition 2 (Bethe Approximation (Very Special Case)). Let G = (V,E) be a graph, and let
f(σ) = 1

2σ
⊤Aσ where A is the adjacency matrix of G. Let F be the downwards closure of the set

of edges E; note that supp(f) ⊆ F . Define the Bethe free energy by

FBethe = FBethe(f)
def
= sup

F-pseudo-distribution p̃

{
Ẽ[f ] +HBethe (p̃)

}
, (4)

where HBethe (p̃) is the Bethe entropy

HBethe (p̃)
def
=
∑
e∈E

H (p̃e)−
∑
v∈V

(deg(v)− 1)H (p̃v)

=
∑
v∈V

H (p̃v)−
∑
e∈E

I (p̃e) .
(5)

Again, the correction −
∑

v∈V (deg(v)− 1)H (p̃v) is just to avoid “double counting”, since each
single-vertex marginal distribution p̃v participates in deg(v)-many H (p̃e). It is not difficult to
show that if G is a tree, then there is a unique global distribution which is Markov w.r.t. G and
whose pairwise marginals are described by such a F -pseudo-distribution. Furthermore, in this
special case, HBethe gives precisely the Shannon entropy of this unique global distribution.

The Bethe free energy FBethe is a heavily studied approximation to the true free energy, par-
ticularly in sparse graphs satisfying suitable girth conditions; see e.g. the monograph [WJ08] and
references therein. A well-known calculation due to [YFW00; YFW05] shows that the optimizers
of Eq. (4) satisfy a certain fixed point equation known as the belief propagation equations. This is
precisely the tree recursion we previously derived combinatorially for spin systems on trees using
conditional independence. It gives a variational perspective on this.
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2 The Sherali–Adams Hierarchy
Now, we turn to relaxations of Eq. (1) based on convex programming hierarchies. For this, we let
Fk =

⋃k
j=0

(
[n]
j

)
for some k ∈ [n], and let SA(k; [n]) denote the polytope of Fk-pseudo-distributions.

This is the level-k Sherali–Adams relaxation for the polytope of globally consistent probability
distributions. By increasing k, we increase the accuracy (and computational complexity) of our
approximations, giving us a hierarchy of optimization problems.

Now let us define an appropriate “pseudo-entropy” functional for Fk-pseudo-distributions. For
this, we first need to know how to condition a pseudo-distribution.

Fact 2.1 (Conditioning a Pseudo-Distribution). Let p̃ ∈ SA(k; [n]). For any subset of coordinates
S ⊆ [n] with |S| ≤ k − 1, and any pinning τ : S → {±1}, define p̃τ by

p̃τ
T (σ)

def
= p̃S⊔T (τ, σ) ∀T ⊆ [n] \ S s.t. |T | ≤ k − |S| , ∀σ : T → {±1}.

Then p̃τ ∈ SA(k − |S| ; [n] \ S).
Definition 3 ((“Augmented Mean-Field”) Pseudo-Entropy; [Ris16]). Let p̃ ∈ SA(k; [n]). For each
0 ≤ j ≤ k − 1, define its jth (“augmented mean-field”) pseudo-entropy by the quantity

H̃j (p̃)
def
= min

S:|S|≤j

{
H (p̃S) +

∑
i/∈S

H (p̃i | p̃S)

}
,

where the second conditional entropy term is w.r.t. p̃S∪{i} and given by

H (p̃i | p̃S)
def
= Eτ∼p̃S

[H (p̃τ
i )] .

If µ is a genuine probability distribution over {±1}n, we simply write H̃j(µ) for the pseudo-
entropy of its collection of marginal distributions.

Lemma 2.2 ([Ris16]). For every 0 ≤ j ≤ k − 1, the function p̃ 7→ H̃j (p̃) over SA(k; [n]) enjoys
the following properties:

• For every genuine probability distribution µ over {±1}n, H(µ) ≤ H̃j (µ).

• The function is concave over SA(k; [n]).

Proof Sketch. The first property just follows from subadditivity of entropy, since for every S ⊆ [n],
letting σ ∼ µ, we have

H(µ) = H(σS) +H(σ[n]\S | σS) ≤ H(σS) +
∑
i/∈S

H(σi | σS).

Picking the best possible S such that |S| ≤ j gives the first claim. For the second claim, note
that concavity is closed under taking sums and minima. Hence, it suffices to establish concavity
of H (p̃S) and H (p̃i | p̃S) for each S. Both just follow from the standard proof of concavity of
Shannon entropy (or convexity of KL-divergence).

Definition 4 (“Sherali–Adams” Free Energy; [Ris16]). Fix a function f : {±1}n → R. In light of
Definition 1 and Definition 3, we define the “Sherali–Adams” free energy for each k ≥ deg(f) and
0 ≤ j ≤ k − 1 by

FSA(k;[n]),j = FSA(k;[n]),j(f)
def
= sup

p̃∈SA(k;[n])

{
Ẽ[f ] + H̃j (p̃)

}
. (6)

Theorem 2.3 ([Ris16]; see also [JKR19]). Fix a symmetric interaction matrix A ∈ Rn×n, and let
f(σ) = 1

2σ
⊤Aσ. For 0 ≤ k ≤ n− 2, FSA(k+2;[n]),k(f) can be computed in nO(k)-time, and satisfies

0 ≤ FSA(k+2;[n]),k(f)−F(f) ≤ O

(
n ∥A∥F√

k

)
.

Furthermore, if p̃ is the optimal pseudo-distribution attaining FSA(k+2;[n]),k(f), then we can round
p̃ into a product measure π over {±1}n satisfying

F(f)− {Eπ[f ] +H(π)} ≤ O

(
n ∥A∥F√

k
+ k

)
.

(Note that the left-hand side upper bounds F(f)−FNMF(f).)
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One should think of k = Θ(1/ϵ2) where ϵ ≈ n−1/3 ∥A∥−1/3
F . Hence, this gives a subexponential-

time algorithm in the regime in which the Gibbs measure µ(σ) ∝ ef(σ) exhibits “mean-field behav-
ior” (i.e. ∥A∥2F ≤ o(n)).

Proof. The objective in Eq. (6) is concave since Ẽ[f ] is a linear function in the variables p̃, and
H̃k (p̃) is concave by Lemma 2.2. These functions can be individually computed in nO(k)-time.
Since there are nO(k) linear constraints on p̃, Eq. (6) is a convex program which can be solved in
nO(k)-time (e.g. via ellipsoid method). Finally, the inequality FSA(k+2;[n]),k(f)−F(f) ≥ 0 follows
trivially from Lemma 2.2 and the fact that SA(k+2; [n]) contains the collection of marginals arising
from genuine probability distributions.

For the remaining claims, the key is that all of the arguments we used previously to study
the mean-field approximation to F(f) (e.g. low-entropy measure decompositions and the Pinning
Lemma) also go through verbatim if we replace F(f) by FSA(k+2;[n]),k(f). To formalize this, let
p̃ be the optimal pseudo-distribution attaining FSA(k+2;[n]),k(f). From this, we build a mixture of
product measures as follows: Fix S ⊆ [n] satisfying |S| ≤ k, and for each pinning τ : S → {±1},
we let the component measure π(τ) be the unique product measure over {±1}n such that

• π
(τ)
i = δτ(i) for all i ∈ S, and

• π
(τ)
i = p̃τ

i for all i /∈ S.

In other words, the marginals inside S are specified by the pinning τ , and the marginals outside S
are specified by the conditionals of the pseudo-distribution p̃. The mixture measure is simply p̃S .
This is essentially coordinate-by-coordinate localization, adapted to the pseudo-distribution p̃.

Rather than comparing FSA(k+2;[n]),k(f) directly with the true free energy F(f), we instead
compare it with FNMF(f) (more or less), since these two quantities sandwich F(f). More specifi-
cally, we establish that for the optimal choice S∗ ⊆ [n] with |S∗| ≤ k,

FSA(k+2;[n]),k(f)− {Eν [f ] +H(ν)} ≤ O

(
n ∥A∥F√

k

)
where ν = Eτ∼p̃S∗

[
π(τ)

]
. (7)

Eq. (7) implies the first claim since Eν [f ] +H(ν) ≤ F(f). Eq. (7) also implies the second claim
since FSA(k+2;[n]),k(f) ≥ F(f), and

H(ν) = H (p̃S∗) + Eτ∼p̃S∗ [ν
τ ] ≤ |S∗| log 2 + Eτ∼p̃S∗

[
H
(
π(τ)

)]
by standard maximum entropy considerations, so we can use the rounding π = π(τ) for τ : S →
{±1} maximizing Eπ(τ) [f ] +H

(
π(τ)

)
. All that remains is to prove Eq. (7) for a good choice of S∗.

The key observation is that the Pinning Lemma also makes sense for Fk+2-pseudo-distributions
when pinning up to k + 1 many coordinates. In particular, by running exactly the same proof,
there exists S∗ ⊆ [n] of size |S∗| ≤ k such that

Eτ∼p̃∗
S

[
E{i,j}∼Unif([n]

2 )

[
C̃ovp̃τ (σi, σj)

2
]]
≤ 2 log 2

k
,

where

C̃ovp̃τ (σi, σj) = Ep̃τ
ij
[σiσj ]− Ep̃τ

i
[σi] · Ep̃τ

j
[σj ]

is the pseudo-covariance w.r.t. the pseudo-distribution p̃τ , which has degree at least 2. Hence,
via the same arguments as we did previously in the context of the mean-field approximation (e.g.
using the Pinning Lemma, Cauchy–Schwarz, and the fact that f is quadratic) we obtain that

Ẽ[f ]− Eν [f ] ≤ O

(
n ∥A∥F√

k

)
.

for this specific S∗. At the same time, for this choice of S∗, we also have

H̃k (p̃) ≤ H (p̃S∗) +
∑
i/∈S∗

H (p̃i | p̃S∗) = H(ν)

just because we minimize over the choice of subset in the definition of H̃k. Note the second equality
holds just by the the Chain Rule for conditional entropy and the fact that each component measure
in ν is a product measure with the correct marginals. These two inequalities combined yield Eq. (7)
as desired.
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3 Deterministic Algorithm for Bases of Matroids
We now switch to the dual perspective, and take advantage of the following variational represen-
tation of the KL-divergence. In the next lecture, we give a more unified presentation of this and
the various optimization problems we’ve already built around the Gibbs Variational Principle.

Theorem 3.1 (Donsker–Varadhan Variational Represetation). Let µ be a base probability measure
on a (finite) state space Ω. Then the function f 7→ logEx∼µ

[
ef(x)

]
is smooth and strictly convex

(up to shifting by an additive constant). Furthermore, for every probability measure ν on Ω,

DKL (ν ∥µ) = sup
f

{
Ex∼ν [f(x)]− logEx∼µ

[
ef(x)

]}
, (8)

and the supremum is uniquely attained at the function f(x) = log ν(x)
µ(x) (up to shifting by an additive

constant).

The main result of this section is the following.

Theorem 3.2 ([AOV21]). There is a deterministic algorithm which outputs a 2r-multiplicative
approximation to the number of bases of any matroidM of rank-r over [n] given by an independence
oracle.

Remark 2. [AOV21] also designed a deterministic 2O(r)-approximation algorithm for the number
of common bases in two matroidsM,N over the same ground set. Again, the algorithm is just to
compute

sup
p∈PM∩N

{
n∑

i=1

H (p)i

}
,

where PM∩N
def
= conv {1B : B ∈ BM ∩BN }. This can be done because PM∩N = PM ∩ PN , a

theorem due to Edmonds, see e.g. [Sch03].
Remark 3. This result is sharp in the sense that no polynomial-time deterministic algorithm
can achieve better than 2O(n/ log2(n))-multiplicative approximation if it is only allowed access the
matroid through an independence oracle [ABF94].

One fruitful way to use Eq. (8), especially towards counting discrete objects satisfying various
hard combinatorial constraints, is to let µ be some “simple” probability measure over a “nicer”
enlarged state space, and let ν be the restriction of µ. For instance, for Theorem 3.2, we will let
µ be a product measure over all of 2[n], and let ν be the induced distribution over the collection
B of bases of the matroidM. This ν is an exponential tilt of the uniform measure over B. With
this in mind, we have the following lemma.

Lemma 3.3. Let PM
def
= conv{1B : B ∈ B} be the basis polytope of the matroid M. Then

log |B| ≤ sup
p∈PM

{
n∑

i=1

H (pi)

}
.

Proof. By subadditivity of entropy, we have

log |B| = H (ν) ≤
n∑

i=1

H (νi) .

This can also be derived from Eq. (8) by restricting to linear functions f(S) = ⟨v,1S⟩ and solving
the resulting optimization problem. Unfortunately, we do not know how to compute the marginals
νi (e.g. by self-reducibility, this is just as hard as computing |B| itself). However, since (µi)i∈[n] =
EB∼UnifB[1B ] ∈ PM,

∑n
i=1 H (µi) is upper bounded by supp∈PM

{
∑n

i=1 H (pi)} as desired.

The real heart of the matter is establishing an approximate converse.

Theorem 3.4 ([AOV21]). For every matroid M of rank-r over [n],

sup
p∈PM

{
n∑

i=1

H (pi)

}
≤ r + log |B| .
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Proof of Theorem 3.2. Lemma 3.3 and Theorem 3.2 together immediately implies that exponen-
tiating the result of (∗) = supp∈PM

{
∑n

i=1 H (pi)} gives a 2r-multiplicative approximation to the
number of bases |B|. Since the objective is a sum of concave functions, it itself is concave. Fur-
thermore, it is well-known that one can design a separation oracle for the polytope PM given an
independence oracle forM itself. Hence, we can optimize convex/concave functions over PM, and
in particular, compute (∗).

All that remains is to prove Theorem 3.4.

3.1 Entropy Inequalities from Log-Concavity
The key is the following entropy inequality for exponential tilts of the uniform measure over bases
of matroids. We will prove it in a moment via log-concavity of the bases generating polynomial.

Proposition 3.5 ([AOV21]). As before, let ν be uniform over B, and let v ∈ Rn be any vector.
Then

n∑
i=1

(Tvν)i log
1

(Tvν)i
≤ H (Tvν) ,

where recall (Tvν) (B) ∝
∏

i∈B evi over B.

Remark 4. As we will see, this inequality applies to any distribution µ over 2[n] with a log-concave
generating polynomial

∑
S⊆[n] µ(S)z

S . See [Ali+21] for a generalization to fractionally log-concave
generating polynomials, which is equivalent to uniform spectral independence under all exponential
tilts.

Proof of Theorem 3.4. Observe that by definition by PM, for every p ∈ PM, there exists some
distribution ν′ over B that has p as its marginals. By the Maximum Entropy Principle, i.e. by
choosing the ν′ maximizing Shannon entropy, there is a unique v ∈ Rn such that (Tvν)i = pi for
all i ∈ [n]. It follows that

sup
p∈PM

{
n∑

i=1

H (pi)

}
= sup

v∈Rn

{
n∑

i=1

H ((Tvν)i)

}
(Maximum Entropy Principle)

≤ sup
v∈Rn

{
n∑

i=1

(Tvν)i log
1

(Tvν)i
+

n∑
i=1

(Tvν)i

}
(Using (1− p) log 1

1−p ≤ p)

= r + sup
v∈Rn

{
n∑

i=1

(Tvν)i log
1

(Tvν)i

}
(r-Homogeneity of B)

≤ r + sup
v
{H (Tvν)} (Proposition 3.5)

= r + log |B| . (Uniform measure maximizes Shannon entropy)

Proof of Proposition 3.5. Let gM(z)
def
=
∑

B∈B ν(B)zB = 1
|B|
∑

B∈B zB be the generating poly-
nomial of ν, which recall is a uniform measure over B. This is precisely the cumulant generating
function of ν when viewed as a polynomial. Previously, we established that log gM(z) is a con-
cave function over the entire nonnegative orthant Rn

≥0, which is equivalent to 0-spectral/entropic
independence for Tvν for all v ∈ Rn. Let us now use this log-concavity to prove Proposition 3.5.

For notational convenience, we consider the special case v = 1; everything we say will generalize
to arbitrary v ∈ Rn. Letting ℓM(z)

def
= log gM

(
z1
ν1
, . . . , zn

νn

)
, by Jensen’s Inequality and log-

concavity of gM,

ℓM (EB∼ν [1B ]) ≥ EB∼ν [ℓM(1B)] .
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Since EB∼ν [1B ] is just the marginal vector (νi)i∈[n], the left-hand side is log gM(1) = log(1) = 0.
For the right-hand side, we have

EB∼ν [ℓM(1B)] =
∑
B∈B

ν(B) log

(
ν(B)

∏
i∈B

1

νi

)

= −H(ν) +

n∑
i=1

(∑
B∋i

ν(B)

)
· log 1

νi

= −H(ν) +

n∑
i=1

νi log
1

νi
.

Putting these inequalities together yields the claim.
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A Examples and Unfinished Proofs
Example 1. Consider, for instance, a degree-2 pseudo-distribution over {±1}3 given by letting the
single-coordinate marginals be p̃1 = p̃2 = p̃3 = Unif{±1}, while the pair marginals p̃ij have the
form
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• p̃(i← +1, j ← +1) = p̃(i← −1, j ← −1) = tij
2

• p̃(i← +1, j ← −1) = p̃(i← −1, j ← +1) =
1−tij

2

for three parameters 0 ≤ t12, t23, t13 ≤ 1.
If t12 > 1/2, then intuitively p̃12 encourages coordinates 1 and 2 to receive the same ±1

assignment. Conversely, if t12 < 1/2, then coordinates 1 and 2 are negatively correlated. This
already suggests a way to construct a pseudo-distribution which does not arise as the marginals of
a globally consistent distribution: Set t12, t23 > 1/2 (e.g. 1) and t23 < 1/2 (e.g. 0). The former
says that all coordinates 1, 2, 3 are all positively correlated, while the latter says that coordinates
2 and 3 are negatively correlated, a contradiction. Global consistency would enforce additional
inequalities on the parameters t12, t23, t13.
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