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In the remaining few lectures, we turn to methods for approximate counting based on optimiza-
tion and entropy. The main workhorse behind all of this is the following variational characterization
of the (log-)partition function. For convenience, we specialize the statement to finite state spaces Ω
endowed with the uniform measure (although this is not necessary); a far more general statement,
and its proof, were already provided in the previous lecture on entropic independence. Recall that
H(µ)

def
= −

∑
x∈Ω µ(x) logµ(x) denotes the Shannon entropy of µ.

Theorem 0.1 (Specialization of Gibbs Variational Principle). Let Ω be a finite state space. Then
the function µ 7→ −H(µ) on probability measures over Ω is smooth and strictly convex. Further-
more, for every function f : Ω → R,

log
∑
x∈Ω

ef(x) = sup
ν

{Ex∼ν [f(x)] +H(ν)} , (1)

and the supremum is uniquely attained at the measure µ(x) ∝ ef(x).

The convex program Eq. (1) shows how one can in principle compute the (log-)partition function
via optimization. The glaring issue, of course, is that the number of variables is |Ω|, which is often
exponentially large.

Theme 0.2. Find a “tractable” relaxation/restriction of the program Eq. (1), and solve the new
(ideally convex) program to approximate the (log-)partition function.

The main challenge with this approach is finding an efficiently computable relaxation/restriction
for which we can provide two-sided guarantees on the approximation error. For the remainder of
this lecture, we focus on the product space Ω = {±1}n for simplicity.

1 The Naïve Mean-Field Approximation
One way to produce a “tractable” optimization problem from Eq. (1) is to restrict the class of
probability measures ν. The (naïve) mean-field approximation does exactly this. More specifically,
the approximation restricts ν in Eq. (1) to be a product measure over {±1}n:

FNMF
def
= sup

ν product
{Eσ∼ν [f(σ)] +H(ν)}

= sup
m∈[−1,1]n

{
Eσ∼π(m)[f(σ)] +H(π(m))

}
,

(2)

where π(m) is the unique product measure on {±1}n with m as its mean vector. Note that by
independence of the coordinates, H(π(m)) =

∑n
i=1

(
1+mi

2 log 1+mi

2 + 1−mi

2 log 1−mi

2

)
. For a given

m ∈ [−1, 1]n, the expectation Eσ∼π(m)[f(σ)] is also easy to compute for many natural functions f
(e.g. quadratic forms, which correspond to Ising model partition functions) just from independence
of the coordinates. Hence, at least from the perspective of representation size, Eq. (2) is tractable
to write down.

We say a (sequence of) probability measures µ(σ) ∝ ef(σ) on {±1}n (with n → ∞) exhibits
“mean-field behavior” if

F − FNMF

n
≤ o(1), (3)
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where F def
= log

∑
σ∈{±1}n ef(σ) is the log-partition function, otherwise known as the free energy.

Note that FNMF ≤ F trivially. This o(n)-additive approximation to F is equivalent to eo(n)-
multiplicative approximation to the true partition function itself. On the one hand, this is a much
weaker notion of approximation than an FPRAS. On the other hand, we will see this phenomenon
occurs in many models far beyond the regime in which local Markov chains (e.g. Glauber dynamics)
mix rapidly.

One of the main uses for this method is the fact that Eq. (2) at least has some chance of
admitting a closed-form formula in the large-n limit, which can then be used to obtain predictions
on the behavior of µ e.g. phase transitions. Indeed, the notion of “phase transition” doesn’t
make sense for fixed finite n, since everything becomes continuous/differentiable/smooth in the
parameters of the model (e.g. β). These are only revealed by looking at a quantity like the
asymptotic free energy density limn→∞

1
nF . Eq. (3) implies that this is also just limn→∞

1
nFNMF,

which is more amenable.
Note, however, that convexity is lost in Eq. (2) because the convex combination of two product

measures is no longer a product measure. Nonetheless, fixed-point iteration (derived from first-
order optimality conditions) and gradient descent are natural methods for solving this in practice.
Provable guarantees for these are often confined to the high-temperature setting (e.g. when Do-
brushin’s condition is satisfied); see [Koe19] for results going beyond this. We discuss issues of
computing the optimum of Eq. (2), or approximations of a similar quality to FNMF, in a future
lecture. For the moment, we only focus on the problem of bounding the approximation error, which
in itself already has significant consequences for the structure of the measure µ; see e.g. [BM17].
For convenience, we focus on Ising-type models in this lecture.

Theorem 1.1 ([JKR19]; building on [Ris16]). Fix a symmetric interaction matrix A ∈ Rn×n, and
consider the Ising Gibbs measure µ(σ) ∝ ef(σ) where f(σ) = 1

2σ
⊤Aσ. Then

F − FNMF ≤ O
(
n2/3 ∥A∥2/3F

)
.

Further extensions of this result to systems with higher-order interactions (i.e. hypergraphs)
are available in [JKR19]. We also establish a more flexible bound, due to Eldan [Eld20].

Theorem 1.2 ([Eld20]). Fix a symmetric interaction matrix A ∈ Rn×n, and consider the Ising
Gibbs measure µ(σ) ∝ ef(σ) where f(σ) = 1

2σ
⊤Aσ. Then

F − FNMF ≤ 3 log det
(
Id+ L1/2 Cov(µ)L1/2

)
,

where L =
(
A2

)1/2.
One can show that Theorem 1.2 recovers Theorem 1.1. The point is the right-hand side has a

more favorable dependence on the eigenvalues (e.g. if they decay in absolute value). For details
of the calculations, see [Eld20]. We prove both results to illustrate how two distinct but related
techniques, both based on measure decompositions/localization schemes, can be used to study
the naïve mean-field approximation. Before we do this, let us give an example application of
Theorems 1.1 and 1.2.

Example 1 (Ferromagnetic Ising Model on a d-Regular Graph). Let d ∈ N, and let A = β
dAdjG,

where G is an arbitrary d-regular graph. Note the 1
d normalization is natural so that the phase

transition in β between fast vs. slow mixing of Glauber dynamics is of constant order. We have

∥A∥2/3F =
(

β
d

)2/3

· (dn)1/3 =
(

β2n
d

)1/3

. Applying Theorem 1.1, we see that the error in the naïve

mean-field approximation is at most β2/3n · d−1/3. Hence, the ferromagnetic Ising model on G
exhibits mean-field phenomena if d ≥ ωn(1), even if β is a large constant far exceeding the phase
transition threshold. In other words, we typically expect the mean-field approximation to work
better on dense problem instances rather than sparse ones.

Using Theorem 1.2, one can obtain much better bounds on the approximation error, e.g. if one
assumes the graph is a strong expander and its eigenvalues decay. For instance, in the extreme
case where A = β

n11
⊤, corresponding to G = Kn (the Curie–Weiss model), Theorem 1.2 gives a

O(log n) bound on the error for all constant β, as opposed to O(n1−ϵ).
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2 Error Bounds via Measure Decompositions
Building off of our previous discussion of localization schemes, the first main result of this lecture
is that a naïve mean-field approximation holds if one can find a decomposition such that the
mixture measure has “low” entropy, and each component measure is “close” to a product measure.
Following our π(m) notation earlier, if µ is any probability measure on {±1}n, then we write π(µ)
for the unique product measure on {±1}n with the same marginals as that of µ. This insight was
elucidated in a number of works [BC16; Coj+18; JKR19].

Theorem 2.1. Let f : {±1}n → R be some Hamiltonian, and suppose we can decompose µ(σ) ∝
ef(σ) as a mixture Eθ∼ξ

[
µ(θ)

]
, where ξ is a distribution over some auxiliary state space I, and each

component measure µ(θ) is again a distribution over {±1}n. Assume this decomposition admits
the following properties:

• “Low Entropy” Mixture:

H(µ)− Eθ∼ξ

[
H

(
µ(θ)

)]
≤ α (4)

for some α > 0 (possibly depending on n).1

• “Near-Product” Components (on Average):

Eθ∼ξ

[
Eµ(θ) [f ]− Eπ(µ(θ))[f ]

]
≤ η (5)

for some η > 0 (possibly depending on n).

Then F − FNMF ≤ α+ η.

Remark 1. It is perhaps interesting to compare this result with what is typically required for mixing
of local Markov chains. For instance, in the spectral/entropic independence framework, we require
that all component measures (i.e. conditionals) to be “close” to a product measure, rather than
“on average”. Furthermore, “closeness” is measured by the magnitude of the covariance matrix,
instead of the deviation in expectation of a single specific test function. As in the third problem
set, we also typically require the mixture measure to satisfy some kind of mixing condition, which
is technically incomparable with the “low entropy” criterion in Eq. (4), but seems more stringent
at a conceptual level.

Proof. Rewriting F and decomposing the terms, we have

F = Eσ∼µ [f(σ)] +H(µ) (Optimality of µ in Eq. (1))

= Eθ∼ξ

[
Eσ∼µ(θ) [f(σ)] +H

(
µ(θ)

)]
+

(
H(µ)− Eθ∼ξ

[
H

(
µ(θ)

)])
≤ Eθ∼ξ

[
Eσ∼µ(θ) [f(σ)] +H

(
µ(θ)

)]
+ α. (Using Eq. (4))

Now let us examine the terms Eσ∼µ(θ) [f(σ)] + H
(
µ(θ)

)
for each θ ∈ supp(ξ). Observe that

since product measures maximize entropy for a prescribed marginal vector2, we have H
(
µ(θ)

)
≤

H
(
π
(
µ(θ)

))
. Combining this with Eq. (5), we obtain

Eθ∼ξ

[
Eσ∼µ(θ) [f(σ)] +H

(
µ(θ)

)]
≤ Eθ∼ξ

[
Eσ∼π(µ(θ)) [f(σ)] +H

(
π
(
µ(θ)

))]
+ η

(Using Eq. (5))

≤ FNMF + η. (Definition of FNMF)

Putting these inequalities together yields the claim.
1This condition is actually weaker than the more natural condition H(ξ) ≤ α.
2This is the “Maximum Entropy Principle” we saw in the previous lecture on entropic independence.
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2.1 Decomposition via Pinning
In light of Theorem 2.1, our goal is now to find such a “good” measure decomposition. One way
to find such a decomposition is to randomly pin a subset of coordinates. This is essentially the
coordinate-by-coordinate localization scheme.

Lemma 2.2 (The “Pinning Lemma”; [Mon08; RT12; MR17]). Let µ be any probability measure
over {±1}n. Then for every ℓ ∈ [n], there exists S ⊆ [n] with |S| ≤ ℓ− 1 such that3

Eτ∼µS

[
E{i,j}∼Unif([n]

2 )

[
Covσ∼µτ (σi, σj)

2
]]

≤ 2 log 2

ℓ
. (6)

Remark 2. We note that this is also a heavily used lemma in the context of rounding semidefinite
programming hierarchies; see [BRS11; RT12; MR17] and references therein.

Let us first combine the “Pinning Lemma” with Theorem 2.1 to complete the proof of Theo-
rem 1.1.

Proof of Theorem 1.1. Let ϵ > 0 be a parameter to be determined later. Applying Lemma 2.2
with ℓ = O(1/ϵ2), we obtain a set S ⊆ [n] of size O(1/ϵ2) such that the average squared covariance
between a random pair of coordinates under a random pinning τ ∼ µS is at most O(ϵ2). We take
our mixture distribution ξ to be µS , which is over pinnings τ : S → {±1}; our component measures
will be the conditionals µτ . Let us now verify the conditions of Theorem 2.1 for this decomposition.

• Since S has size at most O(1/ϵ2) and ξ = µS is supported on a set of size 2|S|, we have
H(ξ) ≤ |S| ≤ O(1/ϵ2) where the first inequality follows from the fact that the uniform
measure maximizes Shannon entropy. But H(µ)−Eθ∼ξ

[
H

(
µ(θ)

)]
≤ H(ξ) (e.g. by using the

Chain Rule for conditional entropies), and so we may take α = O(1/ϵ2).

• For the components, recall that since f(σ) = 1
2σ

⊤Aσ, for every τ : S → {±1},

Eσ∼µτ [f(σ)] =
1

2

n∑
i,j=1

AijEσ∼µτ [σiσj ]

Eσ∼π(µτ )[f(σ)] =
1

2

n∑
i,j=1

AijEσ∼µτ [σi]Eσ∼µτ [σj ] .

It follows that

Eσ∼µτ [f(σ)]− Eσ∼π(µτ )[f(σ)] ≤
1

2

n∑
i,j=1

Aij Covσ∼µτ (σi, σj) =
1

2
Tr (ACov (µτ )) .

Averaging over a random choice of τ ∼ ξ = µS , we obtain that

Eτ∼µS

[
Eσ∼µτ [f(σ)]− Eσ∼π(µτ )[f(σ)]

]
≤ 1

2
Tr (A · Eτ∼µS

[Cov (µτ )])

≤ 1

2
∥A∥F · ∥Eτ∼µS

[Cov (µτ )]∥F (Cauchy–Schwarz)

≤ 1

2
∥A∥F · Eτ∼µS

[
∥Cov (µτ )∥2F

]1/2
(Cauchy–Schwarz)

≤ O(ϵ) · n · ∥A∥F . (Eq. (6))

Hence, we take η = O(ϵ) · n · ∥A∥F .

Combining these calculations with Theorem 2.1, we obtain that the error in the naïve mean-field
approximation is upper bounded as

F − FNMF ≤ O(1/ϵ2) +O(ϵ) · n · ∥A∥F .

Choosing ϵ ≈ n−1/3 ∥A∥−1/3
F to balance both terms in the right-hand side, we obtain the desired

bound.
3It might look slightly strange that the inner expectation is over a random pair of coordinates {i, j} ∈

([n]
2

)
,

not a random pair of unpinned coordinates {i, j} ∈
([n]\S

2

)
. Indeed, if i ∈ S or j ∈ S, then Covσ∼µτ (σi, σj) = 0.

However, in the primary regime of interest, i.e. ℓ ≤ cn for some (typically small) constant 0 < c < 1, the two are
interchangeable up to small multiplicative losses in the right-hand side.
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2.1.1 Proof of Lemma 2.2

It will be more convenient to use information-theoretic quantities, since we can then use the chain
rule for entropy. Recall that if X,Y are two random variables, then the mutual information between
them (or their laws) is defined as

I (X;Y )
def
= DKL (Law(X,Y ) ∥ Law(X)⊗ Law(Y )) .

It can also be expressed as

I (X;Y ) = H(X)−H(X | Y ),

where H(X | Y )
def
= Ey∼Law(Y ) [H(X | Y = y)] is the conditional entropy. I (X;Y ) is another way

of measuring the correlation between X and Y using the KL-divergence.

Lemma 2.3 ([BRS11]). Let X,Y be {±1}-valued random variables. Then Cov(X,Y )2 ≤ 2 ·
I (X;Y ).

A proof is provided in Appendix A. Using this, it suffices to find S ⊆ [n] with |S| ≤ ℓ− 1 and

E{i,j}∼Unif([n]
2 )

[I (σi;σj | σS)] ≤
log 2

ℓ
. (7)

Now, observe that for any S ⊆ [n] and any i, j ∈ [n],

I (σi;σj | σS) = H (σj | σS)−H
(
σj | σS∪{i}

)
. (8)

Our goal is to upper bound the mutual information. The trick is that the left-hand side can be
averaged, while the right-hand side is something we can telescope to keep small. More specifically,
if i1, . . . , iℓ, j is any sequence of coordinates (e.g. by ordering the elements of S ∪{i} = {i1, . . . , iℓ}
from Eq. (8)), then

1

ℓ

ℓ∑
t=1

I
(
σit ;σj | σi1 , . . . , σit−1

)
=

1

ℓ

ℓ∑
t=1

[
H(σj | σi1 , . . . , σit−1

)−H(σj | σi1 , . . . , σit)

]
(Using Eq. (8))

=
H(σj)−H(σj | σi1 , . . . , σiℓ)

ℓ
(Telescoping)

≤ log 2

ℓ
. (Nonnegative of entropy, and σj ∈ {±1})

Averaging over random coordinates i1, . . . , iℓ, j ∼ Unif[n] drawn independently, we see that

1

ℓ

ℓ∑
t=1

E
i1,...,it−1∼Unif[n]

[
E

it,j∼Unif[n]

[
I

(
σit ;σj | σi1 , . . . , σit−1

)]]
≤ log 2

ℓ
.

Since this holds for a randomly chosen subset of coordinates {i1, . . . , it−1} for a randomly chosen
1 ≤ t ≤ ℓ, there must be some specific subset S ⊆ [n] of size ≤ ℓ− 1 such that Eq. (7) holds.

2.2 Refined Decompositions via Stochastic Localization
We now show how to prove Theorem 1.2 by giving a more refined decomposition based on stochastic
localization. The main decomposition result is the following.

Theorem 2.4 ([Eld20]). Let µ be any probability measure over {±1}n.4 Then for every symmetric
positive definite matrix L ≻ 0, there exists a decomposition of µ as µ = Eθ∼ξ

[
µ(θ)

]
enjoying the

following properties:

• H(µ)− Eθ∼ξ

[
H

(
µ(θ)

)]
≤ log det

(
Id+ L1/2 Cov(µ)L1/2

)
• Eθ∼ξ

[
Cov

(
µ(θ)

)]
⪯ L−1

4Eldan’s Theorem extends to any measure over Rn.
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• Eθ∼ξ

[
Cov

(
µ(θ)

)
LCov

(
µ(θ)

)]
⪯ Cov(µ)

Let us first use this to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Using the decomposition furnished by Theorem 2.4 with L =
(
A2

)1/2, we
may take α = log det

(
Id+ L1/2 Cov(µ)L1/2

)
in Theorem 2.1 just using the first property of the

decomposition. Now, let us verify Eq. (5). Following the proof of Theorem 1.1, since f(σ) = 1
2σ

⊤Aσ
is quadratic,

Eµ(θ) [f ]− Eπ(µ(θ))[f ] =
1

2
Tr

(
ACov

(
µ(θ)

))
≤ 1

2
Tr

(
L1/2 Cov

(
µ(θ)

)
L1/2

)
. (Using L ⪰ A)

Averaging over θ ∼ ξ, obtain that

Eθ∼ξ

[
Eµ(θ) [f ]− Eπ(µ(θ))[f ]

]
≤ 1

2
Tr

(
Eθ∼ξ

[
L1/2 Cov

(
µ(θ)

)
L1/2

])
.

We claim the right-hand side is at most 2 log det
(
Id+ L1/2 Cov(µ)L1/2

)
. Indeed, the second item

of Theorem 2.4 ensures that

Eθ∼ξ

[
L1/2 Cov

(
µ(θ)

)
L1/2

]
⪯ Id.

At the same time, the Law of Total Covariance ensures that Eθ

[
Cov

(
µ(θ)

)]
⪯ Cov(µ), whence

Eθ∼ξ

[
L1/2 Cov

(
µ(θ)

)
L1/2

]
⪯ L1/2 Cov(µ)L1/2.

It follows that each individual eigenvalue satisfies

λi

(
Eθ∼ξ

[
L1/2 Cov

(
µ(θ)

)
L1/2

])
≤ min

{
1, λi

(
L1/2 Cov(µ)L1/2

)}
≤ 2 log

(
1 + λi

(
L1/2 Cov(µ)L1/2

))
. (Using Cov(µ) ⪰ 0)

Summing over all i yields the claim.

2.2.1 Proof of Eldan’s Decomposition Theorem

For brevity, we only prove the first two items. The third property Eθ∼ξ

[
Cov

(
µ(θ)

)
LCov

(
µ(θ)

)]
⪯

Cov(µ) requires a little more work, and was not used in the proof of Theorem 1.2; we refer interested
readers to [Eld20; AM22] for its proof.

We follow the presentation in [AM22]. We use the Gaussian channel localization (or stochastic
localization), which we recall is given by the following statistical inference formulation: For L ≻
0 as in the theorem statement, we draw σ ∼ µ (the “signal”) and g ∼ N (0, Id) (the “noise”)
independently, and observe

θ = σ + L−1/2g.

In other words, we pass σ through a noisy channel which additively corrupts σ with Gaussian
noise.5 The component measures in the decomposition are then given by the law of σ conditioned
on observing θ, i.e. µ(θ) def

= Law(σ | θ). The mixture measure ξ is described by convolution

ξ(θ) ∝ Eσ∼µ

[
Eg∼N (0,Id)

[
1θ=σ+L−1/2g

]]
. (9)

on Rn. With this in hand, we now prove the first two items in turn.

• Observe that

H(µ)− Eθ∼ξ

[
H

(
µ(θ)

)]
= H(σ)−H(σ | θ) = I (σ; θ) ,

5Technically, at least for the first two items, we do not need the full power of stochastic localization, only a
“snapshot” at a specific time.
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where the mutual information is computed w.r.t. the above coupling between θ and σ. This
identity has corresponds to how much “information” we have about σ knowing θ. However, we
can go the other way by symmetry, and view I (σ; θ) as expressing how much “information”
we have about θ knowing σ. In particular,

I (σ; θ) = H(θ)−H(θ | σ).

To bound the first term, recall that for a fixed positive definite matrix Σ, the Gaussian
N (0,Σ) maximizes (differential) entropy out of all (centered) distributions with covariance
Σ. Hence,

H(θ) ≤ H (N (0,Cov (ξ))) =
n

2
log(2πe) +

1

2
Tr log Cov (ξ)

=
n

2
log(2πe) +

1

2
Tr log

(
L−1 +Cov(µ)

)
. (Using Eq. (9))

For the second term, since H(θ | σ) = H(L−1/2g), we obtain

H(θ | σ) = n

2
log(2πe) +

1

2
Tr logL−1.

It follows that

I (σ; θ) ≤ 1

2
Tr log Cov

(
µ(θ)

)
− 1

2
Tr logL−1

≤ 1

2
log det

(
Id+ L1/2 Cov(µ)L1/2

)
.

This establishes the first item.

• Our goal is to establish that Eθ∼ξ

[
Cov

(
µ(θ)

)]
⪯ L−1 = Cov

(
−L−1/2g

)
= Cov (σ − θ), i.e.

for every other positive semidefinite matrix B ⪰ 0,

Tr
(
Eθ∼ξ

[
Cov

(
µ(θ)

)]
·B

)
≤ Tr (Cov(σ − θ) ·B) .

Applying cyclicity of trace, this is equivalent to

E
[(

σ −m
(
µ(θ)

))⊤
B
(
σ −m

(
µ(θ)

))]
≤ E

[
(σ − θ)

⊤
B (σ − θ)

]
, (10)

where the expectations on both sides are both w.r.t. a draw of θ, σ from the above pro-
cess. Eq. (10) has a natural interpretation from estimation theory. Consider the problem
of approximating σ given knowledge of θ. There are two natural estimators for σ. One is
simply to output θ, since we know the noise is centered. This is the “maximum likelihood
estimator”, and is what constitutes the right-hand side of Eq. (10). The other is to use the
Bayes estimator, namely the mean m

(
µ(θ)

)
of µ(θ) = Law(σ | θ). This gives the left-hand

side of Eq. (10). Framed this way, the inequality in Eq. (10) is just saying that the Bayes
estimator is indeed optimal, in the sense that it minimizes the expected Euclidean distance
to σ (reweighted by B) out of all possible estimators. This is a standard result in Bayesian
statistics, and we leave it as an exercise.
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A Unfinished Proofs
Proof of Lemma 2.3. The main idea is to write Cov(X,Y ) using total variation distance, and then
apply Pinsker’s Inequality. Observe that

DTV (Law(X,Y ), Law(X)⊗ Law(Y ))

=
1

2

∑
x,y∈{±1}

|Pr[X = x, Y = y]− Pr[X = x] Pr[Y = y]|

=
1

2

∑
x,y∈{±1}

|x| · |y| · |Pr[X = x, Y = y]− Pr[X = x] Pr[Y = y]| (Since x, y ∈ {±1})

≥ 1

2

∣∣∣∣∣∣
∑

x,y∈{±1}

xyPr[X = x, Y = y]−
∑

x,y∈{±1}

xPr[X = x] · yPr[Y = y]

∣∣∣∣∣∣ (Triangle Inequality)

=
1

2
|Cov(X,Y )| .

Applying Pinsker’s Inequality to upper bound the left-hand side yields the claim.
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