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In this lecture, we study a significantly more general and powerful framework for proving rapid
mixing of Markov chains called localization schemes [CE22]. It includes the spectral/entropic in-
dependence framework as a special case, but also encompasses the famous stochastic localization
method of Eldan [Eld13]. The latter has been successfully applied to a myriad of longstanding
open problems, with the most notable among them being perhaps the (near-)resolution [Eld13;
LV17; LV18; Che21] of the Kannan-Lovász-Simonovits (KLS) Conjecture [KLS95] from asymp-
totic convex geometry. Stochastic localization has also been used recently as a sampling algorithm
[AMS22; MW23].1 Finally, there are additional connections with the statistical physics renormal-
ization group method [BBD23]. It is certainly not possible to do justice to stochastic localization
in a single lecture. The goal here is to present an overarching framework encompassing all of these
as special cases, and focus on applications to Markov chain mixing times.

1 Localization Processes
Definition 1 (Localization Process/Scheme; [CE22]). Let µ be a probability measure on a state
space Ω (e.g. {±1}n,Rn). A localization process for µ is a sequence of random probability measures{
µ(t)
}
t∈R≥0

satisfying the following properties:

1. Initialization: µ(0) = µ with probability 1.

2. (Iterative) Refinement: For every event A ⊆ Ω, the stochastic process {µ(t)(A)}t∈R≥0
on

R≥0 is a martingale. This means that for all 0 ≤ T1 ≤ T2,

E
[
µ(T2)(A) |

{
µ(t)(A) : 0 ≤ t ≤ T1

}]
= µ(T1)(A).

Here, the expectation is w.r.t. the randomness of choosing a sequence of measures {µ(t)}t∈R≥0
.

3. Localization: For all events A ⊆ Ω, µ(t)(A) converges to either 0 or 1 almost surely as
t→∞.

A localization scheme L on a state space Ω is a mapping from every probability measure µ over Ω
to a localization process for µ.2 We sometimes write L(µ, t) for the random measure µ(t) obtained
by running the localization specified by L on µ up to time t.

Informally, a localization process is a structured sequence of decompositions of the measure
µ. This sequence of decompositions is “iterative” in the sense that for each 0 ≤ s ≤ t ≤ ∞, the
decomposition at “time” t is obtained by applying further decomposition to the random measure
µ(s). The sequential nature underlies the power of this framework.

To make things (perhaps painfully) explicit and to avoid possible confusion regarding the mean-
ing of “E”, “randomness of the measure µ(t)”, etc., here is an alternative description of a localization
process which we will employ occasionally below. For each t ∈ R≥0, there is some index set I(t),
a probability measure ξ(t) over I(t) called the mixture measure, and a collection of probability
measures

{
νι : ι ∈ I(t)

}
over Ω called component measures, such that

• µ(t) is a random probability measure equalling the component νι with probability ξ(t)(ι), and
1However, notably these sampling results only yield o(n) error in Wasserstein distance w.r.t. the Euclidean

metric. In particular, they do not yield FPAS for sampling, nor FPRAS for counting.
2The notation L here is not to be confused with the logarithmic Laplace transform.
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• µ(x) = Eι∼ξ(t) [νι(x)] for all x ∈ Ω.3

The first initialization criterion mandates that I(0) is a singleton with νι = µ where ι is the
unique element of I(0). The third localization criterion enforces that at time t = ∞, µ(∞) is a
Dirac measure on Ω. Note that when combined with the initialization and martingale conditions,
this means that µ(∞) = δx with probability µ(x). This alternative viewpoint is not quite correct
because we have not enforced the martingale property at all, which should intuitively mean that for
every 0 ≤ s ≤ t ≤ ∞, the decomposition at time t “refines” the one at time s; in other words, µ(t)

is obtained by further decomposing µ(s). Nonetheless, this perspective will sometimes be useful
when explaining things at an informal level.

Although we have formulated localization processes in continuous-time, the discrete-time ver-
sion is already captured by letting µ(t) be constant on intervals [k, k+1) for all k ∈ N. Definition 1
is best understood by seeing multiple examples, and how a single localization process can be
defined in many (not obviously equivalent) ways. One such localization process, the coordinate-
by-coordinate localization, is one which we are already very familiar with. Additional examples of
localization processes (beyond those mentioned in this lecture) are provided in [CE22].

1.1 The “Formulaic” Perspective
First, we can build localization processes via direct methods. This way of viewing things does
not capture the martingale property for a localization process, but is useful for getting an explicit
handle on what each µ(t) is marginally.

Example 1 (Coordinate-by-Coordinate Localization). Let µ be a probability measure {±1}n (or,
more generally, [q]n). Let µ(0) = µ, and let µ(1) be the random probability measure given by µi←s,
where i ∼ [n] and s ∼ µi. Inductively applying this one-step decomposition to µ(t) to obtain µ(t+1)

for each t ∈ {0, . . . , n}, we obtain a discrete-time localization process where

µ(t) = E
S∼([n]

t )
[Eτ∼µS

[µτ ]] , ∀t ∈ {0, . . . , n}.

More explicitly, for each t ∈ {0, . . . , n}, the index set I(t) is given by pairs (S, τ) where S ∈
(
[n]
t

)
and τ is a partial assignment supported on S. We have ξ(t)(S, τ) = 1

(nt)
·µS(τ), i.e. ξ(t) is a mixture

of the marginal distributions µS over a uniformly random S ∼
(
[n]
t

)
. The component measures

are the conditionals of µ based on pinning all coordinates in S. Note that ξ(t) is essentially the
measure “µt” we defined previously in the context of spectral and entropic independence.

Example 2 (Gaussian Channel Localization). Let µ be a probability measure on Ω ⊆ Rn. Fix a
positive definite “driving matrix” A ≻ 0. For each t ∈ R≥0, define

µ(t)(x) ∝ µ(x) · exp
(
−1

2
(zt − tx)

⊤ A

t
(zt − tx)

)
, ∀x ∈ Ω,

where zt “parametrizes” the component distribution µ(t), and is drawn from the convolution of µ
with the (independent) Gaussian N

(
0, tA−1

)
:

ξ(t)(z) = Ex∼µ
[
Ey∼N (0,tA−1) [1z=tx+y]

]
.

Note that in the definition of µ(t), one can expand the Gaussian part and note that the term
− 1

2z
⊤
t

A
t zt cancels after normalization. Hence, we can also express µ(t) as

µ(t)(x) ∝ µ(x) · exp
(
−1

2
tx⊤Ax+ x⊤Azt

)
, ∀x ∈ Ω. (1)

So, we are introducing a Gaussian component in µ which concentrates more and more as we increase
t; note that this guarantees that µ(∞) is a Dirac mass. We also have an exponential tilt component
in the direction Azt. This is a special case of the stochastic localization process introduced in
[Eld13], where it is possible to let the choice of “driving matrix” A depend on t.

3Note that each νι must be absolutely continuous w.r.t. µ (almost surely).
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Example 3 (Negative Fields Localization). Let µ be a probability measure {±1}n. For each t ∈
R≥0, define

µ(t)(σ) ∝ µ(σ) · exp
(
−t ·

∣∣σ−1(+1) \ St

∣∣) , ∀σ ∈ {±1}n s.t. σ |St
≡ 1,

where St “parametrizes” the component distribution µ(t), and is drawn from the following mixture
distribution:

ξ(t)(S) =
∑

σ∈{±1}n

σ−1(+1)⊇S

µ(σ) ·
(

1

1 + e−t

)|S|(
e−t

1 + e−t

)|σ−1(+1)\S|
, ∀S ⊆ [n]. (2)

In this case, somewhat similar to the coordinate-by-coordinate localization process, the component
distributions are obtained from µ by applying exponential tilts. More specifically, we apply an
external field which biases the distribution towards −1. To compensate, we pin a special subset
of coordinate St all to +1. We will sometimes write (T−t1µ)St←+1 for this distribution to make
things explicit. Since we’re looking at the Boolean cube, in the case t→∞, the distribution ξ(∞)

concentrates on σ−1(+1), which uniquely determines σ and ensures that µ(∞) is a Dirac mass.
Hence, the process indeed localizes.

1.2 The Statistical Inference Perspective
Most localization processes can be alternatively defined via statistical inference problems. The
rough skeleton of this information-theoretic approach is as follows. Let D(t) denote some class of
noisy “observation channels” such that t = 0 corresponds to “infinite noise”, and t =∞ corresponds
to “zero noise”. More formally, each D(t) is some Markov kernel mapping distributions on Ω to
distributions on some other auxiliary space I(t). Our target measure µ is some idealized distribution
which we do not have direct access to. However, we have “approximate” access in the following
sense:

• “Nature” draws X ∼ µ, often called the “signal”.

• This sample X is then corrupted by sending it through the channel D(t), yielding a noisy
copy Yt of X often called the “observation”. t is often thought of as a signal-to-noise ratio
(SNR) parameter.

The inference problem is to recover X from knowledge of Yt. For the purposes of building a
localization process, the observation Yt induces a conditional measure which we take to be µ(t).
The mixture measure ξ(t) arises from channel D(t). This perspective is very useful at a conceptual
level as it suggests many connections with other areas within statistics and information theory.
To translate this formulation into the formulaic approach of Section 1.1, the key is to use Bayes’
Theorem. However, we emphasize that this discussion is much too informal; see Remark 1.
Example 4 (Coordinate-by-Coordinate (Cont.)). Continuing Example 1, let µ be a probability
measure {±1}n (or, more generally, [q]n). To highlight the “paths” from µ(0) = µ to the random
Dirac measure µ(∞), let σ ∼ µ and (i1, . . . , in) ∼ Unif{permutations π : [n]→ [n]}. Then take

µ(t) = Law (σ | σ(i1), . . . , σ(it)) , ∀t ∈ {0, . . . , n}.

In other words, take the noisy channel D(t) to be a “homogenized version” of the erasure channel :
We only reveal a uniformly random t-subset S ∈

(
[n]
t

)
of the coordinates of a sample σ ∼ µ; all

other coordinates are “erased”. In this set up, the noisy channel D(t) is precisely the down operator
Dn↘t we previously defined.
Example 5 (Gaussian Channel (Cont.)). Continuing Example 2, let µ be a probability measure on
Ω ⊆ Rn. Fix a positive definite matrix A ≻ 0. Let X ∼ µ and let (Bt)

∞
t=0 be a Brownian motion

on Rn which is independent of X.4 We define the (continuous-time) Gaussian channel localization
process by

µ(t) = Law
(
X | tX +A−1/2Bt

)
, ∀t ∈ R≥0.

4Recall that, informally, this is a coupled sequence of Gaussians such that Bt − Bs ∼ N (0, (t − s)Id) for all
0 ≤ s < t ≤ ∞.
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The channel Pt is just corruption with additive Gaussian noise. This perspective on stochastic
localization was first elucidated in [AM22].

Example 6 (Negative Fields (Cont.)). Continuing Example 3, let µ be a probability measure on
{±1}n. Let σ ∼ µ, and independently build a random (coupled) sequence (St)t∈R≥0

of subsets of
[n] as follows:

• We initialize with R0 = ∅. Throughout, we ensure the sequence is increasing in the sense
that ST1

⊆ ST2
for all 0 ≤ T1 ≤ T2 ≤ ∞.

• If the subsets have been sampled up to some time tℓ (for some ℓ ∈ {0, . . . , n}), then for each
i ∈ [n] \ Stℓ , let Ti be an independent random variable uniquely defined by

Pr[Ti > y]
def
= exp

(
−
∫ y

tℓ

Pr[σ(i) = +1] ds

)
,

where Pr is w.r.t. the measure (T−s1µ)Stℓ
←+1 on {±1}n obtained by pinning all coordinates

of Stℓ to +1 and applying an external field of e−s to bias µ further towards −1. Letting

tℓ+1
def
= min

i∈[n]\Stℓ

Ti and i∗
def
= argmin

i∈[n]\Stℓ

Ti,

we extend the sequence of subsets by letting St = Stℓ + i∗ for all tℓ < t ≤ tℓ+1. Once we
reach tn, St = [n] for all t > tn.

The point is that each St is marginally distributed as ξ(t) from Eq. (2), but that the entire se-
quence is coupled so as to guarantee it is increasing. The first point can be checked directly, and
furthermore

µ(t) = Law(σ | σSt
).

In other words, the noise channel consumes a random σ ∼ µ, and outputs a random subset of
σ−1(+1) where each coordinate is added independently with probability 1

1+e−t . Note that while
the law of this random sequence of sets depends on µ, the sequence is generated independently
from σ ∼ µ.

Remark 1. The discussion at the beginning of this subsection is problematic since it doesn’t pre-
scribe how the noise channels D(t) are related to one another. For instance, it doesn’t capture the
crucial property that the sequence of noisy observations {Yt}t∈R≥0

should be coupled in a way such
that for every 0 ≤ s ≤ t ≤ ∞, Ys is obtained from Yt by adding more noise. Notably, this property
is clearly maintained in Examples 4 to 6. The correct way to formalize this measure-theoretically
is through filtrations and the notion of a Doob localization scheme; see Appendix A for further
discussion.

1.3 The Stochastic Differential Equation (SDE) Perspective
A third way to build a localization process is to do it “dynamically”. We prescribe the “infinitesimal
change” between µ(t) and µ(t+ dt) for an infinitesimally small5 dt (i.e. the “dynamics”), and let this
implicitly induce a sequence of random probability measures as the solution of a system of stochastic
differential equations. This perspective is useful for calculations since one can take derivatives and
bring in the power of Itô calculus.

In many useful examples, this infinitesimal change is described by multiplication by an affine
function, suitably normalized so that the resulting object is still a probability measure,

µ(t+ dt)(x)

µ(t)(x)
= 1 +

〈
x−m

(
µ(t)
)
, dzt

〉
, (3)

where m(µ) denotes the mean of a distribution on a subset of Rn, and zt is some (possibly
random) sequence of vectors satisfying E

[
dzt | µ(t)

]
= 0.6 The first term +1 and the subtraction

5For all purposes in the lecture, it is fine to think of dt as a tiny but strictly positive real number.
6The second manipulation only really makes sense if the localization process is genuinely in continuous-time and

there is some smoothness assumption.
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−m(µ(t)) together ensure that µ(t+ dt) still integrates to 1. This is technically an infinite system of
stochastic differential equations, but under various regularity conditions (which are often satisfied
in practice), they nonetheless admit a solution [Eld13; EKZ22]. This special type of localization
process is called a linear tilt localization process, and can be viewed as a Markov chain on the
space of probability measures. Localization processes based on tilts is important, as studying their
associated Markov chains (see Lemma 2.1) can be reduced to studying the covariance matrices of
the measures encountered during the localization process.

To keep the body of this lecture short, we give the SDE formulation of the coordinate-by-
coordinate and negative fields localizations in Appendix B.

Example 7 (Gaussian Channel (Cont.)). Continuing Examples 2 and 5, let µ be a probability
measure on Ω ⊆ Rn, and let (Bt)

∞
t=0 be a Brownian motion on Rn whose randomness is independent

of µ. We define µ(t+ dt) from µ(t) by

µ(t+ dt)(x)

µ(t)(x)

def
= 1 +

〈
x−m

(
µ(t)
)
, A−1/2 dBt

〉
(4)

This recovers the Gaussian channel localization scheme via direct computation using Itô calculus.
To get a rough sense on why these are equivalent, note that by rearranging Eq. (4) and applying
Itô’s formula for differentiating a function involving a Brownian motion term, we obtain

d logµ(t)(x) =
〈
x−m

(
µ(t)
)
, A−1/2 dBt

〉
− 1

2

(
x−m

(
µ(t)
))⊤

A−1
(
x−m

(
µ(t)
))

dt. (5)

If we drop the m
(
µ(t)
)

terms, which are present only to normalize things, we can then integrate
both sides and rearrange to recover Eq. (1). Note that the first term in the right-hand side is
what we would get if we used the usual rules of calculus, and is responsible for the external field
component exp

(
x⊤Azt

)
in Eq. (1). The second term is due to the randomness of dBt, and accounts

for the Gaussian component exp
(
− 1

2 tx
⊤Ax

)
in Eq. (1). We have the second term because the

standard deviation of dBt is of order
√
dt, not dt, and so second-order/quadratic effects (e.g.

from the Taylor expansion) remain macroscopic relative to dt, and must be included when we do
stochastic differentiation.

2 Markov Chains via Localization
Every localization process gives rise to a natural Markov chain which we can use to sample from
µ.

Lemma 2.1. Let µ be a probability measure on a state space Ω, and let
{
µ(t)
}
t∈R≥0

be a localization
process for µ. Then for every t > 0,7, the family of probability measures {P(x→ ·)}x∈Ω on Ω given
by

P(x→ A)
def
= E

[
µ(t)(x)µ(t)(A)

µ(x)

]
, ∀x ∈ Ω, A ⊆ Ω, (6)

is a Markov chain on Ω which is reversible w.r.t. µ.8 Here, the expectation is again w.r.t. the
randomness in the choice of measure µ(t) (i.e. the mixture measure ξ(t)).

Given the formula in Eq. (6), verifying that this is indeed a reversible Markov chain is straight-
forward. One way to express the action of this Markov chain is as follows: Suppose the current
state is xprev.

1. We first sample a random ι ∈ I(t) according to ξ(t)(ι) · νι(xprev)
µ(xprev)

, which indexes a probability
measure νι over Ω.

2. We then transition to xnext ∼ νι.
7t is also allowed to be a random stopping time.
8We technically should write P(t) instead of P to highlight the dependence of the Markov chain on t. However,

this could be confused with iterating the Markov chain t times, so we suppress this notation.
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To formalize this, let D(t) ∈ RΩ×I(t)
≥0 be the Markov kernel capturing the first step (i.e. mapping a

random xprev ∼ µ′ for some other distribution µ′ on Ω, to a random ι ∈ I(t)). This D(t) is precisely
the noisy channel in Section 1.2. Similarly, let U (t) ∈ RI

(t)×Ω
≥0 be the Markov kernel capturing the

second step (i.e. mapping a random ι ∼ ξ′ for some other distribution ξ′ on I(t), to a random
xnext ∼ νι). Its rows are precisely the component measures

{
νι : ι ∈ I(t)

}
. This U (t) precisely

gives the conditional measure described in the statistical inference perspective (see Section 1.2).
For the coordinate-by-coordinate localization process, D(t),U (t) are precisely the “down” and “up”
operators in the spectral/entropic independence framework.

Fact 2.2 (“Inference Version” of Lemma 2.1). For P as defined in Lemma 2.1, we have that
P = D(t)U (t). Furthermore, D(t),U (t) are adjoints of each other in the sense that for every pair of
functions f : I(t) → R and g : Ω→ R,〈

f,U (t)g
〉
ξ(t)

=
〈
D(t)f, g

〉
µ
. (7)

Another way to think about this Markov chain is via coupling: We draw a coupled pair of
random variables (X,Y ), each of which is marginally distributed according to µ, by

1. first sampling the random choice of (component) measure µ(t) from the mixture measure ξ(t),

2. then sampling X,Y from µ(t) independently from each other.

X and Y are coupled through the choice of µ(t). The Markov chain described in Eq. (6) is the law
of Y conditioned on knowing X. Let us now see some examples.

Example 8 (Glauber Dynamics). For the coordinate-by-coordinate localization (seer Examples 1,
4 and 11), Eq. (6) with t = n − 1 gives rise precisely to Glauber dynamics. Indeed, following the
above coupling interpretation of P, we sample a coupled pair (σ, σ′), each marginally distributed
according to µ, such that they agree on all except a single uniformly random coordinate. The
conditional measure of σ′ given σ is supported on configurations obtained from σ by flipping at
most one coordinate. A direct calculation reveals that

P
(
σ → σ⊕i

)
=

1

n
·

µ
(
σ⊕i
)

µ(σ) + µ (σ⊕i)
, ∀σ ∈ {±1}n, i ∈ [n].

For other choices of t, we also recover the t-uniform block dynamics, where a uniformly random
(n− t)-subset of coordinates are resampled in each step.

Example 9 (Restricted Gaussian Dynamics). For the Gaussian channel localization (see Exam-
ples 2, 5 and 7), Eq. (6) for fixed finite t ∈ R≥0 gives rise to a Markov chain called the restricted
Gaussian dynamics, first introduced in [LST21] in the context of continuous log-concave sampling.
Let µ be a probability measure on Ω ⊆ Rn (e.g. {±1}n, a convex body, all of Rn, etc.). For a fixed
t ∈ R≥0, its evolution proceeds as follows. Suppose we are currently at a configuration xprev ∈ Ω.

• Draw zt ∼ N
(
txprev, tA

−1).
• Sample xnext from the Gaussian tilt ∝ µ(xnext) · exp

(
− 1

2 (zt − txprev)
⊤ A

t (zt − txprev)
)

and
transition to xnext.

It turns out that in the t→∞ limit, we also recover the classical Langevin dynamics.

Example 10 (Field Dynamics). For the negative fields localization (see Examples 3, 6 and 12),
Eq. (6) gives rise to a Markov chain called the field dynamics, first introduced in [Che+21]. For
a fixed t ∈ R≥0, its evolution proceeds as follows. Suppose we are currently at a configuration
σ ∈ {±1}n.

• Draw a random subset of coordinates S ⊆ σ−1(+1) as follows: Every coordinate i ∈ σ−1(+1)
is added independently with probability 1

1+e−t .

• Resample σ[n]\S according to the distribution (T−t1µ)S←+1.

The connection between the negative fields localization and the field dynamics was stated in [CE22]
without proof, and written down more explicitly in [CLY23].
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3 Conservation of Variance and Entropy
Now let us study how to establish fast mixing of the Markov chain P described in Lemma 2.1. We
will significantly generalize the framework of spectral and entropic independence. First, observe
that the Dirichlet form of P is given by9

EP(f, g) = E
[
Covµ(t)(f, g)

]
.

Hence, we can rewrite global variance and entropy factorization (i.e. Poincaré and modified/standard
log-Sobolev constants) in the language of localization schemes as

γ (P) = inf
f :Ω→R

E
[
Varµ(t)(f)

]
Varµ(f)

ϱ (P) ≥ inf
f :Ω→R≥0

E
[
Entµ(t)(f)

]
Entµ(f)

(8)

The right-hand side of each of these are essentially the optimal constants for “approximate ten-
sorization of variance/entropy”. These are global quantities which control the mixing time of P.
Now, let us reduce these to more “local” inequalities.

Definition 2 ((Approximate) Conservation of Variance/Entropy; Informal). Let µ be a probability
measure on a state space Ω, and let

{
µ(t)
}
t∈R≥0

be a localization process for µ. We say
{
µ(t)
}
t∈R≥0

satisfies approximate conservation of variance w.r.t a sequence of nonnegative constants
{
θ(t)
}
t∈R≥0

if for every global test function f : Ω→ R,

E
[
Varµ(t+ dt)(f) | µ(t)

]
Varµ(t)(f)

≥ 1− θ(t) dt (9)

We say
{
µ(t)
}
t∈R≥0

satisfies approximate conservation of entropy if the same inequality, with all
occurrences of Var replaced by Ent, holds for all global nonnegative test functions f : Ω→ R≥0.

Remark 2. This definition more or less makes sense for continuous-time localization processes. The
discrete-time analog is simpler, since one should take the time increment to be dt = 1.

Theorem 3.1 (Local-to-Global; Informal). Let µ be a probability measure on a state space Ω, and
let
{
µ(t)
}
t∈R≥0

be a (continuous-time) localization process for µ. If
{
µ(t)
}
t∈R≥0

satisfies approxi-

mate conservation of variance (resp. entropy) w.r.t.
{
θ(t)
}
t∈R≥0

, then γ (P) ≥ exp
(
−
∫ t

0
θ(s) ds

)
(resp. ϱ (P) ≥ exp

(
−
∫ t

0
θ(s) ds

)
).

An informal proof is briefly sketched in Appendix C, although the essential idea is similar to
what we already saw previously.

Relation with Spectral and Entropic Independence In the above framework, approximate
conservation of entropy for the coordinate-by-coordinate localization process (see Examples 1, 4
and 11) is precisely entropic independence. In a similar manner, conservation of variance cor-
responds to spectral independence, although an additional step is required to show that it is
equivalent to bounding the maximum eigenvalue of the influence matrix. This calculation was
already done in a previous lecture. Theorem 3.1 and its proof is essentially the same as the one
we used previously to show that spectral/entropic independence implies rapid mixing of Glauber
dynamics. The crucial feature which makes this possible is that these are all linear tilt localization
schemes.

3.1 Entropy Conservation via Correlation Inequalities
As we previously mentioned, approximate conservation of variance/entropy for the coordinate-by-
coordinate localization scheme boils down to spectral/entropic independence. In a similar way,
conservation for other localization schemes (e.g. Gaussian channel, negative fields, etc.) can also
be reduced to correlation inequalities.

9Or, written more explicitly, Eι∼ξ(t) [Covνι (f, g)].
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Lemma 3.2 (Entropy Conservation for Gaussian Channel Localization). Let µ be a probability
measure on Rn, and consider the Gaussian channel localization

{
µ(t)
}
t∈R≥0

of µ w.r.t. a driving
matrix A ≻ 0 (see Examples 2, 5 and 7). Fix some t ∈ R≥0, and suppose there is a sequence of
positive semidefinite matrices (Ks)s∈[0,t] such that

Cov
(
Tvµ(s)

)
⪯ Ks, ∀v ∈ Rn, 0 ≤ s ≤ t almost surely.

Then we have the approximate conservation of entropy bound

E
[
Entµ(t)(f)

]
Entµ(f)

≥ exp

(
−∥A∥−1op

∫ t

0

∥Ks∥op ds

)
.

Lemma 3.3 (Entropy Conservation for Negative Field Localization). Let µ be a probability measure
on {±1}n, and consider the negative fields localization

{
µ(t)
}
t∈R≥0

of µ (see Examples 3, 6 and 12).

Suppose the following two conditions hold almost surely for µ(t) for all t ∈ R≥0:

• Spectral Independence: There is a constant η ≥ 0 (depending only on µ, not t) such that
µ(t) and all of its pinnings are all η-spectrally independent.

• Tame/Weakly Stable Marginals: There is a constant K > 1 (depending only on µ, not
t) such that µ(t) and all of its pinnings satisfy

Pr[i← +1 | τ ]
Pr[i← −1 | τ ]

≤ K · Pr[i← +1]

Pr[i← −1]

Pr[i← −1] ≥ 1

K
.

Then there is a universal constant c > 0 such that for every t ∈ R≥0, we have the approximate
conservation of entropy bound

E
[
Entµ(t)(f)

]
Entµ(f)

≥ exp
(
−cK 4tη

)
.

Remark 3. One can also replace all occurrences of entropy with variance in Lemma 3.2 and the
statement will still hold. We can do the same for Lemma 3.3, in which case the “tame/weakly
stable marginal” assumption is no longer required.
Remark 4. In Lemma 3.3, the “tame/weakly stable marginals” requirement is a relaxation of the
“marginal boundedness” assumption we previously used.

Rather than formally proving Lemmas 3.2 and 3.3, which will require some background in
stochastic calculus, let us give some heuristic intuition for their statements; we refer interested
readers to [CE22] for all of the relevant calculations. For convenience, we look at conservation of
variance rather than entropy; the case of entropy is handled similar to what we did previously, by
either strengthening the correlation assumption to include all exponential tilts (as in Lemma 3.2)
and then using the logarithmic Laplace transform, or imposing additional assumptions on the
marginals (as in Lemma 3.3).
Intuition 1 (Lemmas 3.2 and 3.3). We argue along the lines of how we previously connected the in-
fluence matrix in spectral independence to factorization of variance (i.e. approximate conservation
of variance for the coordinate-by-coordinate localization scheme). Fix some small time (increment)
dt ≈ 0, which has mixture measure ξ(dt) over I(dt) and component measures

{
νι : ι ∈ I(dt)

}
. Then

inf
f :Ω→R

E
[
Varµ(dt)(f)

]
Varµ(0)(f)

= γ
(
D(dt)U (dt)

)
(Fact 2.2)

= γ
(
U (dt)D(dt)

)
(AB and BA have same (nonzero) eigenvalues)

= 1− λmax

(
U (dt)D(dt) − 1⊗ ξ(dt)

)
.

Similar to D(dt)U (dt), one can also view U (dt)D(dt) through the lens of coupling: We draw a coupled
pair (ι, ι′), each marginally distributed according to ξ(dt), by first sampling x ∼ µ, and then
sampling ι, ι′ ∼ δxD(dt) independently. The pair (ι, ι′) is correlated through the common x ∼ µ.
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Because dt ≈ 0 is small, one should think of I(dt) as being a small set compared to the entire
space Ω = I(∞), and D(dt)U (dt) being comparable to the trivial Markov chain D(0)U (0) = 1µ⊤. For
instance, in the extreme case dt = 0, then I(dt) is a singleton, stemming from the fact that µ(0) = µ
w.p. 1. As another example, if µ is on {±1}n, then for coordinate-by-coordinate localization
with dt = 1, we have I(dt) = [n] × {±1}. One should then think of U (dt)D(dt) as encoding
“pairwise conditional marginals” of ι, ι′ ∈ I(dt) in µ, and U (dt)D(dt)−1⊗ξ(dt) as encoding “pairwise
correlations”.10

Now, here is the punchline for why the covariance matrix of µ itself appears in Lemmas 3.2
and 3.3: The coordinate-by-coordinate, Gaussian channel, and negative fields localization schemes
are all linear tilt localization schemes! This means that these ι ∈ I(dt) can be encoded through
vectors in Rn, and their correlation structure is dictated by the inner product induced by the
matrix Cov (µ) (or that of various exponential/Gaussian tilts of µ). Hence, in essence, there is
significant “dimensionality reduction”/“compression” when we ask for λmax

(
U (dt)D(dt) − 1⊗ ξ(dt)

)
,

which translates to a spectral condition on the covariance of µ and its tilts. The same intuition
applies verbatim if we replace µ(0) = µ by µ(t), and µ(dt),U (dt),D(dt) by µ(t+ dt),U (t+ dt),D(t+ dt).
This can all be formalized via stochastic calculus.

4 Annealing and Boosting
One of the most useful aspects of the localization schemes framework is the fact that one can
concatenate localization schemes. Suppose one wishes to prove fast mixing of a natural Markov
chain like Glauber dynamics. This naturally leads one to study the coordinate-by-coordinate
localization per Example 8. However, in many settings, we do not know how to achieve optimal
O(n log n) mixing with spectral/entropic independence for pinnings (i.e. coordinate-by-coordinate
localization) alone. A major insight of [CE22] is to apply another “better behaved” localization
scheme first, and then perform coordinate-by-coordinate localization to obtain tighter control on
the mixing time of Glauber dynamics.

Definition 3 (Concatenation). Let Linit,Lfinal be two localization schemes on a common state space
Ω. For a (possibly random stopping) time T ∈ R≥0, define their T -concatenation as the localization
scheme L = ConcatT (Linit,Lfinal) which maps a measure µ on Ω to the following localization process:

• For every 0 ≤ t ≤ T , let µ(t) = Linit(µ, t).

• For every T < t <∞, let µ(t) = Lfinal

(
µ(T ), t− T

)
.

Theorem 4.1 (Annealing/Boosting). Let Linit,Lfinal be two localization schemes on a common
state space Ω such that Lfinal is Doob in the sense of Definition 5. For each probability measure
ν on Ω, let Pν denote the Markov chain obtained from Lfinal via Eq. (6) for some specific time
t ∈ R≥0.

Now fix a probability measure µ on Ω, and let
{
µ(t)
}
t∈R≥0

be the localization process produced
by applying L = ConcatT (Linit,Lfinal) to µ for some (possibly random stopping) time T ∈ R≥0.
Assume the following two conditions hold:

• Variance/Entropy Conservation for Linit: There exists a constant θ > 0 such that

inf
f :Ω→R

E
[
Varµ(T )(f)

]
Varµ(f)

≥ θ

(
resp. inf

f :Ω→R≥0

E
[
Entµ(T )(f)

]
Entµ(f)

≥ θ

)
.

• Fast Mixing of Components: There exists a constant α > 0 such that

γ
(
Pµ(T )

)
≥ α

(
resp. ϱ

(
Pµ(T )

)
≥ α

)
almost surely

(e.g. Lfinal also satisfies approximate conservation of variance/entropy).

Then γ (Pµ) ≥ θα (resp. ϱ (Pµ) ≥ θα).

10Again, in all of the above manipulations, there are technical issues which need to be addressed (e.g. the fact
that D(t),U(t) are infinitely large matrices with possibly uncountably many rows, etc.), and this can all be resolved
through the language of stochastic calculus.
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Since the proof of Theorem 4.1 requires the notion of a Doob localization scheme (see Defi-
nition 5), we relegate its proof to Appendix A. It suffices to say that all of our prime examples,
i.e. coordinate-by-coordinate (Example 4), Gaussian channel (Example 5), and negative fields
(Example 6), are all Doob. The strength of Theorem 4.1 is that we can use Linit to first anneal
the distribution µ and make it more well-behaved, before applying Lfinal which ultimately induces
the Markov chain of interest. To illustrate this tool, let us establish optimal O(n log n)-mixing of
Glauber dynamics for two models which we do not know how to achieve via the tools we’ve devel-
oped so far (although polynomial mixing times can be achieved via spectral/entropic independence
for pinnings).

4.1 Ising Models with Bounded Spectral Diameter
Theorem 4.2 ([EKZ22; Ana+22; CE22]). Fix a constant 0 < δ < 1, and let A ∈ Rn×n be a sym-
metric matrix satisfying λmax (A)−λmin (A) ≤ 1−δ. Then Glauber dynamics for the corresponding
Ising Gibbs measure µ(σ) ∝ exp

(
1
2σ
⊤Aσ

)
over {±1}n satisfies ϱ (PGD) ≥ δ

n .

Remark 5. A major result of Bauerschmidt–Bodineau [BB19], preceding [EKZ22; Ana+22; CE22],
obtained an optimal log-Sobolev inequality with a slight modification of the Glauber Dirichlet
form. This unfortunately did not imply fast mixing of Glauber dynamics, but it stimulated much
further work.

Proof Sketch. Note that since µ is supported on {±1}n, it is invariant under shifting A by a
diagonal matrix. In particular, we can assume δ

2 · Id ⪯ A ⪯
(
1− δ

2

)
· Id. We use Gaussian channel

localization with driving matrix A−1/2 as Linit, and coordinate-by-coordinate localization as Lfinal.
We concatenate at time T = 1, since at precisely this time, the Gaussian component has completely
canceled out the original quadratic interaction term, leaving only a product measure for µ(t).

We let us now formalize the argument. Throughout, Pµ is precisely Glauber dynamics for µ.
We verify the conditions of Theorem 4.1. By the definition of Linit, we have that at the specially
chosen time T = 1, µ(T ) = TvUnif{±1}n for some v ∈ Rn. Hence, ϱ

(
Pµ(T )

)
≥ 1/n almost surely.11

We just need approximation conservation of entropy for Linit with constant δ. This is obtained by
verifying Lemma 3.2. Indeed, since µ(s)(σ) ∝ exp

(
1−s
2 σ⊤Aσ + ⟨σ, v⟩

)
for some v ∈ Rn and every

0 ≤ s ≤ T = 1, by the results of the third problem set, we have that Cov
(
Tuµ(s)

)
⪯ 1

1−s(1−δ)
almost surely for all v ∈ Rn. Taking Ks =

1
1−s(1−δ) · Id, Lemma 3.2 says that

θ ≥ exp

(
−
∫ 1

0

1− δ

1− s(1− δ)
ds

)
= δ.

Combined with ϱ
(
Pµ(T )

)
≥ 1/n, Theorem 4.1 implies that ϱ (Pµ) ≥ δ

n as desired.

4.2 Tree-Unique Hardcore Model without Bounded Maximum Degree
Theorem 4.3 ([Che+21; Ana+22; CE22]). Let G = (V,E) be an arbitrary graph, and let ∆ denote
its maximum degree (which we now allow to grow with n). Let 0 < δ < 1 be a fixed constant, and
assume λ ≤ (1 − δ)λc(∆). Then there is a universal constant c > 0 such that Glauber dynamics
for the hardcore Gibbs measure on G with activity λ satisfies ϱ (PGD) ≥ exp(−c/δ)

n .

Proof Sketch. To prove Theorem 4.3, we use the negative fields localization as Linit, and coordinate-
by-coordinate localization as Lfinal. We concatenate at a constant T ≈ log(100e). This time is
chosen so that almost surely, the measure µ(T ) is the hardcore Gibbs measure of some subgraph
of G with activity e−Tλ ≈ 1

100∆ . For this, it was previously known that ϱ
(
Pµ(T )

)
≳ 1

n up to a
multiplicative loss by a universal constant [Erb+17].12 To apply Theorem 4.1, all that remains is
to establish approximate conservation of entropy along the negative fields localization for µ.

For this, observe that µ(s) is always a hardcore Gibbs measure on a subgraph of G with a weaker
activity e−sλ. Hence, by the “correlation decay to spectral independence” results we have already
seen, we have O(1/δ)-spectral independence for µ(s) and all of its pinnings. The “tame/weakly

11We more or less already proved this by tensorization of entropy earlier when we discussed spectral/entropic
independence.

12Note that this is well within the regime in which path coupling contracts. However, an Ω(1/n) lower bound on
the modified log-Sobolev constant is still highly nontrivial.
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stable marginals” condition can also be verified directly for the hardcore model, using the fact
that the marginal lower and upper bounds coincide up to a universal multiplicative constant when
λ ≤ O(1/∆). We omit the calculation for brevity. Applying Lemma 3.3, we obtain the desired
cnoservation of entropy.
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A Filtrations and Doob Localization Schemes
As we said in Remark 1, the informal description provided at the beginning of Section 1.2 is
inadequate when it comes to doing things formally. Here, we fill in the gap, as well as prove
Theorem 4.1. We begin with some standard measure theory. TODO

Definition 4 (Filtration). TODO

Definition 5 (Doob Localization). TODO

Proof of Theorem 4.1. TODO

B Coordinate-by-Coordinate and Negative Fields as Linear
Tilt Localizations

Example 11 (Coordinate-by-Coordinate (Cont.)). Continuing Examples 1 and 4, let µ be a prob-
ability measure over {±1}n, and let (i1, . . . , in) be a uniformly random permutation of [n] whose
randomness is independent of µ. Let U1, . . . , Un be i.i.d. Unif[−1, 1] random variables, and for all
j ∈ [n], define

vj
def
=

sj

1 + sj ·m
(
µ(j−1)

)
ij

· 1ij where sj = sign

(
m
(
µ(j−1)

)
ij
− Uj

)
.

Then take

µ(t+1)(σ)

µ(t)(σ)

def
= 1 +

〈
σ −m

(
µ(t)
)
, vt+1

〉
, ∀σ ∈ {±1}n.

This again recovers the coordinate-by-coordinate localization scheme, since in each increment of t,
the linear function

〈
σ −m

(
µ(t)
)
, vt+1

〉
restricts µ(t) is a subcube.

Example 12 (Negative Fields (Cont.)). Continuing Examples 3 and 6, let µ be a probability measure
over {±1}n. We define µ(t+ dt) from µ(t) by

µ(t+1)(σ)

µ(t)(σ)

def
= 1 +

〈
σ −m

(
µ(t)
)
, dvt

〉
, ∀σ ∈ {±1}n,

where

vt(i)
def
= −t+ 1[i ∈ St+ dt \ St]

1 +m
(
µ(t)
)
i

, ∀i ∈ [n],

and the St is built up as in Example 6.
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C Unfinished Proofs
Proof Sketch of Theorem 3.1. Rearranging Eq. (9), we obtain that

d logE
[
Varµ(t)(f)

]
≥ −θ(t) dt.

Integrating from 0 to t,

logE
[
Varµ(t)(f)

]
− log Varµ(f) ≥ −

∫ t

0

θ(s) ds.

Exponentiating both sides and using Eq. (8) yields the claim.

Remark 6. The manipulations here don’t quite make sense for discrete-time localization processes.
However, the analog is to replace the integral with a sum, and use the chain rule plus a telescoping
trick:

E
[
Varµ(t)(f)

]
Varµ(f)

= E

[
t∏

s=1

Varµ(s)(f)

Varµ(s−1)(f)

]

= E

[
t∏

s=1

E

[
Varµ(s)(f)

Varµ(s−1)(f)

∣∣∣∣∣µ(s−1)

]]

≥
t∏

s=1

(
1− θ(s)

)
≳ exp

(
−

t∑
s=1

θ(s)

)
.
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