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In this lecture, we study the counting analog of the quintessential algorithmic problem in
theoretical computer science: SAT. Recall that an instance of SAT is a Boolean formula Φ = (V, C)
in conjunctive normal form (CNF), i.e. it is given by a collection of Boolean-valued variables V
and an “AND-of-ORs”

∧
C∈C C where each clause C is an OR of a subset of the variables (possibly

negated). Our goal is to design an algorithm which approximates the number of solutions to a given
CNF-formula in the regime where we can efficiently find a satisfying solution via the (algorithmic)
Lovász Local Lemma. Building on the techniques in the previous lecture, will use a disagreement
percolation argument in the analysis. Note that there is a well-known FPRAS for counting solutions
to DNF-formulas (i.e. “OR-of-ANDs”) based on rejection sampling [KLM89].

1 The Local Lemma Regime
We begin by restating the celebrated Lovász Local Lemma (LLL), which we discussed previ-
ously in the context of the cluster expansion and zero-freeness for the (multivariate) indepen-
dence polynomial. We specialize the statement somewhat to make it more “compatible” with our
notation for SAT. Let X1, . . . , Xn denote a sequence of independent {T,F}-valued random vari-
ables; write ν = Law(X1, . . . , Xn) for the associated product measure on {T,F}n. For an event
B ⊆ {T,F}n, we write V(B) ⊆ [n] for the minimal subset of {Xi}ni=1 whose values completely
determine whether or not B occurs. Now let {Bj}mj=1 be a collection of events. For any event A,
we write N(A) = {j : Bj ̸= A,V(A)∩V(Bj) ̸= ∅} for the subset of events {Bj}mj=1 which intersect
A in constituent variables. This naturally induces a graph on [m] itself called a dependency graph
for the events {Bj}mj=1; in particular, each Bi is mutually independent of {Bj}mj=1 \N(Bi).

Theorem 1.1 (Asymmetric LLL). In the aforementioned setup, suppose there exists p : [m] →
(0, 1) such that

Pr
ν
[Bj ] ≤ pj

∏
i∈N(Bj)

(1− pi), ∀j ∈ [m].

Then

Pr
ν

 m∧
j=1

Bj

 ≥ m∏
j=1

(1− pj) > 0.

Furthemore, for every other event A,

Pr
ν

A | m∧
j=1

Bj

 ≤ Pr
ν
[A] ·

∏
j∈N(A)

(1− pj)
−1

. (1)

Now let us consider SAT. For simplicity, we will assume throughout this lecture that our
formulas Φ are k-uniform, i.e. all clauses have exactly k variables, and have maximum degree
d, i.e. all variables participate in at most d distinct clauses; to shorten notation, we call these
“(k, d)-formulas”. In Section 4, we briefly comment on recent progress for random k-uniform CNF-
formulas, which do not have bounded degrees for the variables. We also write n = |V| for the total
number of variables, and m = |C| for the total number of clauses.

One can form a natural bipartite graph with variables V on one side, clauses C on the other,
and an edge between a clause and each of its constituent variables; call this bipartite graph HΦ. By
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assumption, all variable vertices have degree ≤ d, and all clause vertices have degree k. The graph
H2

Φ[V] on V connects two variables if and only if they participate in a common clause. Similarly,
the graph H2

Φ[C] on C connects two clauses if and only if they intersect; this is the dependency
graph for the LLL defined above. Note that by assumption, both graphs have maximum degree
≤ k(d+ 1).

A classical application of the LLL (Theorem 1.1) says that every (k, d)-formula Φ has at least
one satisfying assignment, so long as e(d+1) ≤ 2k: Take ν = Unif{T,F}V , the events {BC}C∈C to
correspond to clauses C not being satisfied, and p(C) = Θ

(
1
dk

)
, noting that Prν [BC ] = 2−k; for a

more complete argument, see Theorem 2.2 and its proof. Moreover, such a satisfying assignment
can be found efficiently by the following simple stochastic local search algorithm:

1. Sample (X1, . . . , Xn) ∼ ν; recall that the coordinates X1, . . . , Xn are independent.

2. While there exists a violation, i.e. some clause C is not satisfied, resample all variables in C
independently.

We will refer to this as the Moser–Tardos algorithm.1 The following seminal result of Moser and
Tardos gives rigorous guarantees for this algorithm [MT10].

Theorem 1.2 (Informal; [MT10]). Suppose the conditions of Theorem 1.1 hold w.r.t. some p :
[m] → (0, 1). Then there is a randomized algorithm which outputs values X1, . . . , Xn such that
∧mj=1Bj holds upon termination. Furthermore, if V(Bj) ≤ O(1) for all j ∈ [m], then the expected

running time of this algorithm is upper bounded by O
(∑m

j=1
pj

1−pj

)
.

Our goal is to use the LLL (Theorem 1.1), and our ability to find satisfying assignments
Theorem 1.2, to design algorithms for (approximately) sampling uniformly random satisfying as-
signments. Throughout, let µ = µΦ denote the uniform measure over all satisfying assignments to
the CNF-formula Φ. The main result of this lecture is the following.

Theorem 1.3 (Informal; [Moi19; Fen+21]). There are constants 0 < c < 1/2 and c′ > 0 such that
if 2ck ≥ c′ · d5k5, then there exists an FPRAS for counting solutions to any (k, d)-formula.

Remark 1. [Moi19] gave an FPTAS for the problem, with exponent scaling polynomially in d, k. Al-
lowing randomization, [Fen+21] gave an algorithm whose running time scales roughly as d2k3n1+ζ ,
where ζ can be made arbitrarily small at the expense of degrading the constant c′. We emphasize
that the statement above is not the best known.

The Monotone Setting We say a CNF-formula is monotone if no literal is negated in any
clause. Such formulas can always trivially be satisfied by setting all variables to T, regardless of
what k, d are. Combinatorially, satisfying assignments to monotone CNF-formulas are equivalent
to hypergraph independent sets, where we view (V, C) as a hypergraph, and an independent set is a
subset of vertices which does not fully contain any hyperedge.2 In the monotone setting, [HSZ19]
established rapid mixing of Glauber dynamics all the way up to d ≤ c · 2k/2 for some constant
c > 0, improving significantly upon previous work of [BDK08].

Hardness and Failure of Strong Spatial Mixing Even in the monotone setting, [Bez+19]
proved that unless NP = RP, there is no FPRAS for counting satisfying assignments if d ≥ c′ · 2k/2
for some other constant c′ ≈ 5. This was achieved via a reduction to approximately computing
the partition function of the hardcore model beyond uniqueness, which is NP-hard [Sly10; SS14].
This reduction was originally due to [BDK08], although at the time, the sharpest hardness results
for the hardcore model were not known. An interesting aspect of this hardness is that its onset
occurs below the uniqueness threshold for hypergraph independent sets on the k-uniform d-regular
hypertree, which is roughly d ≤ 2k

2k ; note the exponential scaling in k, as opposed to k/2. It is an
open problem to close the gap in parameters between the current best algorithmic results, and the
current best NP-hardness results.

In the nonmonotone setting, additional challenges arise, as naïve Glauber dynamics can easily
become disconnected. As a simple example, consider the formula

(x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ (x3 ∨ ¬x1).

1This algorithm also sometimes goes under the name “FIX”.
2Assigning a variable T is equivalent to pinning that vertex to be out of the independent set.
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The only solutions are (T,T,T) and (F,F,F). Similarly, strong notions of correlation decay like
strong spatial mixing fail dramatically, even in the monotone case. Indeed, regardless of how large
k is, strong spatial mixing already fails for all d ≥ 6 just by reducing hypergraph independent set
in the infinite k-uniform d-regular hypertree to the usual notion of independent set in the infinite
(d− 1)-ary tree.

2 Sampling via Dynamics on Projected Spaces
Let Φ be some fixed (k, d)-formula. Recall µ = µΦ denotes the corresponding uniform measure
over satisfying assignments. For any subset of variables A ⊆ V, let µA denote the induced marginal
distribution over variables in A, i.e.

µA(τ) ∝
∑

σ:V→{T,F}
σ(x)=τ(x),∀x∈A

µ(σ).

Theme 2.1. To overcome disconnectedness of Glauber dynamics, “project” the distribution onto
a smaller state space. Approximately sample from this projected distribution (e.g. via Markov
chains), and randomly lift the resulting sample back into the original state space.

At a high level, for CNF-formulas, our “projection” will be the marginal distribution over a
carefully chosen subset of variables M⊆ V. We will sample a partial assignment over this subset
of variables via Glauber dynamics, and then complete this partial assignment into a full satisfying
assignment by sampling from the conditional measure. The latter will be achieved by leveraging
sparsity of the formula and standard tools based on shattering. In order for this scheme to work,
we need to choose M such that Glauber dynamics for µM mixes quickly.

For this, we again appeal to Theorem 1.1. Notably, Eq. (1) gives us nice quantitative control
on the marginals of µ. The following result will suggest a good set of variables M.

Theorem 2.2 (Local Uniformity; [Moi19; Fen+21]). Let Φ = (V, C) be a CNF-formula such that
every variable participates in at most d clauses, and every clause contains between k1 and k2
variables. For every s ≥ k2, if 2k1 ≥ 2eds, then Φ has at least one satisfying assignment (so that
µ is well-defined), and for every variable x,

max

{
Pr
σ∼µ

[σ(x) = T], Pr
σ∼µ

[σ(x) = F]

}
≤ 1

2
exp

(
1

s

)
. (2)

Remark 2. Upon inspecting the proof, it is clear that we can obtain analogous worst-case upper
bounds on the joint marginal distribution of any A ⊆ V as

Pr
σ∼µ

[σ |A= τ ] ≤ 1

2|A|︸︷︷︸
=νA(τ)

· exp
(
|A|
s

)
︸ ︷︷ ︸

error

, ∀τ : A → {T,F}.

Proof. Let ν be the uniform measure over {T,F}V . For each clause C ∈ C, define a “bad event”
BC corresponding to C not be satisfied by a random assignment σ ∼ ν. Taking p(BC) =

1
2ds and

using the fact that any clause can have at most k2(d− 1) neighboring clauses, we have

p(BC)
∏

C′∩C ̸=∅

(1− p(BC′)) =
1

2ds

(
1− 1

2ds

)k2(d−1)

≥ 1

2ds

(
1− 1

2ds

)2ds−1

(Using s ≥ k2)

≥ 1

2eds
(Using

(
1− 1

z

)z−1 ≥ 1
e for all z > 1)

≥ 2−k1 (Assumption)
≥ Pr

ν
[BC ] . (C has at least k1 variables)
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For the marginal bound, we plug into Eq. (1) to obtain

Pr
σ∼µ

[σ(x) = T] = Pr
σ∼ν

[σ(x) = T | σ satisfies Φ]

≤ Pr
σ∼ν

[σ(x) = T] ·
∏
C∋x

(1− p(BC))
−1 (Eq. (1) and definition of N({x← T}))

≤ 1

2

(
1− 1

2ds

)−d
(Degree ≤ d)

≤ 1

2
exp

(
1

s

)
.

The same argument applies to Prσ∼µ [σ(x) = T] and so we’re done.

We will also make use of the following convenient closure property for µ. Its proof is straight-
forward.

Definition 1 (Simplification). Let Φ = (V, C) be a CNF-formula. For a subset of variables A ⊆ V,
and a partial assignment τ : A → {T,F}, define the simplification Φτ to be the formula obtained
from Φ by deleting all clauses in Φ which are already satisfied by τ , and deleting all variables in A
from the remaining clauses. Note that this definition only makes sense if τ is consistent with some
global satisfying assignment σ : V → {T,F}.

Lemma 2.3 (Conditionals & Simplification). For every CNF-formula Φ = (V, C) and every ex-
tendable partial assignment τ : A → {T,F}, we have µτ

Φ = µΦτ⊗δτ . In other words, the conditional
measure µτ

Φ is uniform over satisfying assignments to the simplification Φτ , adjoined with τ .

2.1 Moitra’s Marking Scheme
Theorem 2.2 tells us that as long as every clause contains enough unpinned variables, then at
least w.r.t. local statistics, the measure µ looks approximately uniform. Intuitively, this suggests
something like “high-temperature behavior” or spectral independence. However, we will definitely
need control over the conditionals of µM as well. Thus, roughly speaking, we need M ⊆ V to
satisfy two competing properties:

• M is sufficiently small so that even if we pin M arbitrarily, every clause still has many
unpinned variables, allowing us to invoke Theorem 2.2.

• At the same time, we wantM to be sufficiently large so that once we pin the variables ofM
according to a random partial assignment τ drawn from µM, we shatter the formula. This
ensures we can efficiently sample a full satisfying assignment from the conditional measure
µτ .

The precise properties we need fromM is formalized as follows.

Definition 2 (Marking; [Moi19]). Let Φ be a (k, d)-formula, and let 0 < α < 1/2 be a constant.
We call a subset of variablesM⊆ V a valid α-marking w.r.t. Φ if every clause C of Φ has at least
αk marked variables and at least αk unmarked variables (i.e. |C ∩M| , |C ∩ (V \M)| ≥ αk).

We first show that such an α-marking can be found efficiently. Throughout, one can take α = 1
3

for simplicity.

Theorem 2.4 ([Fen+21]). Let Φ be a (k, d)-formula, and let 0 < α < 1/2 be a constant. If
2k ≥ Ω (dk)

O(1/(1−2α)2), then for every δ > 0, there is a randomized algorithm which successfully
outputs a valid α-marking M⊆ V with probability at least 1− δ and runs in time O

(
dkn log 1

δ

)
.

Proof Sketch. We again use the (algorithmic) LLL. For each variable, we add it toM independently
with probability 1/2. For each clause C ∈ C, let BC denote the complement of the event that C has
at least αk marked and unmarked variables. We can control each individual Prν [BC ] via Chernoff
bounds. Applying Theorem 1.1 with p(BC) = Θ

(
1
dk

)
again allows one to show that an α-marking

exists. Furthermore, this α-marking can be found efficiently using the Moser–Tardos algorithm;
see Theorem 1.2.
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2.2 Glauber Dynamics for µM

Now that we have determined a suitable subset of variables M ⊆ V, we need to draw a random
partial assignment τ ∼ µM. Towards this, we show that Glauber dynamics mixes quickly.

Theorem 2.5 ([Fen+21]). Let Φ = (V, C) be a (k, d)-formula, and let M ⊆ V be a valid α-
marking for some constant 0 < α < 1/2. If 2αk ≥ Ω (dk)

5, then Glauber dynamics for µM mixes
in O(n log n)-steps.

We sketch the proof in Section 3 by using a disagreement percolation argument to establish
spectral independence for µM. Before we do this, however, let us emphasize that Theorem 2.5 is
only part of the story. Glauber dynamics for µM requires access to the conditional marginals of
µM, which are #P-hard to compute. Hence, it is not clear that we can even implement a single
step of this Glauber dynamics. It turns out one can implement an approximate version of this
Glauber dynamics, using ideas from Section 2.3. The point is that with high probability, these
marginals can be approximated to arbitrary accuracy, precisely for the same reason that we can
draw a full satisfying assignment from the conditional measure µτ . The latter is actually enough
for implementing Glauber dynamics; we do not need to actually approximate these conditional
marginals.

2.3 Completing an Assignment: Shattering and Rejection Sampling
Now assume that we have a random partial assignment on a valid α-marking M ⊆ V. We show
that with high probability, we can efficiently sample from µτ . This is established via two lemmas.

Definition 3 (Shattering). Let Φ = (V, C) be a (k, d)-formula. We say a partial assignment
τ : M → {T,F} on a subset of variables M ⊆ V (e.g. a valid α-marking) δ-shatters Φ if all
connected components of clauses in the simplification Φτ have size ≲ dk log n

δ .

Lemma 2.6 ([Fen+21]). Let Φ = (V, C) be a (k, d)-formula, and let M⊆ V be a valid α-marking
for some constant 0 < α < 1/2. If 2αk ≥ Ω (dk)

3, then

Pr
τ∼µM

[τ δ-shatters Φ] ≥ 1− δ/n.

The proof of this lemma uses ingredients similar to the proof we will give for Theorem 3.1
below. Hence, we omit it for brevity; see [Fen+21].

Lemma 2.7 ([Fen+21]). Let Φ = (V, C) be a (k, d)-formula, and suppose some partial assignment
τ : M → {T,F} δ-shatters Φ. If 2αk ≥ Ω

(
dk
θ

)
for some (small) constant θ > 0, then for every

ϵ > 0, we can draw a random σ : V → {T,F} satisfying ∥Law(σ)− µτ∥TV ≤ ϵ in time Õ(n/ϵ)1+θ.

Proof Sketch. By Lemma 2.3, suffices to draw a uniformly random satisfying assignment τ ′ to the
simplification Φτ , and then take σ = τ ⊔ τ ′. To do this, we just need to sample an assignment
for each maximal connected component of Φτ . Since τ shatters Φ, these components all have
logarithmic size, and so by the LLL (Theorem 1.1), a uniformly random {T,F}-assignment to the
variables of each component satisfies each with probability at least O(δ/n)θ. Hence, applying a
(small) polynomial number of rejection sampling steps gives the algorithm.

2.4 The Full Algorithm
Given what we have outlined so far, we now give a sketch of the algorithm.

1. Use Theorem 2.4 to find a valid α-markingM⊆ V.

2. Run Glauber dynamics on µM for O(n log n) iterations with initial distribution Unif{T,F}M,
using the algorithm in Lemma 2.7 to (approximately) implement each step. This yields a
random partial configuration τ :M→ {T,F} which is (approximately) distributed according
to µM.

3. Sample σ ∼ µτ using the algorithm in Lemma 2.7, and output σ : V → {T,F}.

There are several technical details we have swept under the rug.
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• First, the iterates of Glauber dynamics are never truly distributed according to µM, and so
we need to extend Lemma 2.6 to accommodate all of these distributions as well. This is why
initializing with Unif{T,F}M is required.

• Second, because we cannot implement Glauber dynamics exactly due to errors in Lemma 2.7,
Theorem 2.5 does not apply. We need to transfer this mixing time bound to the approximate
Glauber dynamics that we can actually implement.

For the resolution of all of these, see [Fen+21].

3 Spectral Independence for Marked Variables
In this section, we sketch the proof of Theorem 2.5, which forms the conceptual core of this lecture.
The ideas here can also be used to establish Lemma 2.6 (and various analogs). More precisely, we
will establish spectral independence for µM. The connection with Theorem 2.5 is discussed further
in Remark 3.

Theorem 3.1. Let Φ be a (k, d)-formula, and let M⊆ V be a valid α-marking for some constant
0 < α < 1/2. If 2αk ≥ Ω (dk)

5, then µM is O(1)-coupling independent.

Remark 3. Theorem 3.1 by itself is not enough to prove Theorem 2.5, since one also needs to
handle conditional distributions. Furthermore, the conditional measure µM does not satisfy any
conditional independence properties (even though µ does), and so O(1)-spectral independence for
all conditionals does not immediately lead to a nearly-linear mixing time for Glauber dynamics (at
least not with the technology we have developed so far).

The rough idea that gives O(n log n)-mixing for Glauber dynamics on µM is to extend the
coupling argument in the proof of Theorem 3.1 into a path coupling argument, where one instead
bounds a Dobrushin-type influence. This requires some additional technical ingredients, so to keep
things simple, we only prove Theorem 3.1; we refer interested readers to [Fen+21] for the full proof
of Theorem 2.5.

Fix any variable x0 ∈ V. We will prove that W1

(
µx0←T, µx0←F

)
≤ O(1), which implies O(1)-

coupling independence for µ itself, and is stronger than O(1)-coupling independence for µM. How-
ever, we stated Theorem 3.1 for µM instead of µ since ultimately, this argument can only be
extended to the conditionals of µ obtained by pinning up to linear-in-|M| many marked variables;
we have little control when the pinning involves unmarked variables since we will need the local
uniformity furnished by Theorem 2.2.

Our goal is to iteratively construct a randomly coupled pair of satisfying assignments τ ∼
µx0←T, σ ∼ µx0←F such that E[dH(τ, σ)] is small. We use a disagreement percolation argument
due to Moitra [Moi19]. Throughout the coupling, we will track a set of “dangerous variables”
Vdanger, which will always include the set of variables with disagreeing assignments. However, in
order to use local uniformity to control the propagation of disagreements, we will also include
additional variables in Vdanger which don’t necessarily disagree, but for which we will have no
control over. Clearly, since Vdanger includes all discrepancy variables, E [|Vdanger|] is an upper bound
on W1

(
µx0←T, µx0←F

)
. We will control the growth of Vdanger in expectation.

3.1 The Coupling Scheme
We now define the coupling. Initialize Vdanger = {x0}, τ1 = {x0 7→ T}, σ1 = {x0 7→ F}, Cunprocessed =
C, and assume we have currently built up two partial assignments τℓ, σℓ for some ℓ.

• Phase 1: Suppose there is a clause C ∈ Cunprocessed containing at least one dangerous variable
and at least one nondangerous variable. Sequentially sample the remaining unpinned marked
variables in C using the TV-optimal coupling between their conditional marginals, ultimately
yielding two new partial configurations τℓ+1, σℓ+1. We have two cases:

1. Good Case: Suppose the clause C is now satisfied by both τℓ+1 and σℓ+1. Add to
Vdanger all currently disagreeing variables in C.

2. Bad Case: Otherwise, add all variables in C to Vdanger.

In either case, remove C from Cunprocessed.
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• Phase 2: Otherwise, optimally couple all remaining variables.

Let us begin our analysis of this coupling with a few basic observations. The following claims
also capture some of the key notions we will use later.

Claim 3.2. 1. Throughout the coupling, all variables in Vdanger are dangerous due to at least
one of the following types of error:

• Type I Error: The variable has disagreeing assignments under τℓ, σℓ.
• Type II Error: The variable participates in a fully processed clause C which is not

satisfied w.r.t. both τℓ and σℓ.

Furthermore, every variable of disagreement is contained in Vdanger.

2. The set of dangerous variables Vdanger is connected in H2
Φ[V].

3. Every clause C ∈ C is visited at most once in Phase 1.

Proof. The first claim is obvious. The second claim follows inductively from the fact that every
clause selected for consideration in Phase 1 is required to contain a variable in Vdanger. For the
third claim, if a clause C is visited in Phase 1, then it is removed from Cunprocessed by the end of
that iteration, and so it will never be considered again in Phase 1.

Claim 3.3. The moment we enter Phase 2, all clauses C ∈ C come in three types.

• Dangerous Clauses Cdanger: C ⊆ Vdanger entirely, i.e. all variables in C are dangerous.

• Satisfied Clauses Csat: C contains a dangerous variable, but is satisfied in both τℓ and σℓ.

• Safe Clauses Csafe: C ⊆ V \ Vdanger, i.e. all variables in C are not dangerous.

Moreover, we can perfectly couple all remaining variables not in Vdanger.

Proof. Every clause is either in Cunprocessed or C \Cunprocessed. The execution of Phase 1 enforces that
throughout the coupling, all clauses in C \ Cunprocessed are either satisfied or completely contained in
Vdanger. At the termination of Phase 1, all clauses in Cunprocessed are either fully contained in Vdanger
or fully contained in V \ Vdanger. The classification of clauses immediately follows.

Observe that in the graph H2
Φ[C], any path from Cdanger to Cgood must go through a satisfied

clause in Csat. It follows that µτℓ (resp. µσℓ) is the uniform measure over satisfying assignments
to the formula with clause set C \ Csat which is consistent with τℓ (resp. σℓ). Since this formula
factorizes into two formulas, one supported on Vdanger and one supported on V\Vdanger, and τℓ agrees
with σℓ on the visited variables in V \ Vdanger, it follows that µτℓ

V\Vdanger = µσℓ

V\Vdanger . In particular,
all variables in V \ Vdanger can be coupled perfectly in Phase 2.

3.2 Controlling the Growth of Vdanger
Now let us analyze the expected number of dangerous variables. Connectivity of Vdanger gives us
bounds on the worst-case growth of |Vdanger| due to our assumptions on the uniformity and degree
of the input formula Φ. Type I errors can be controlled with no problem, but it is not clear how to
iteratively bound the probability of Type II errors, since this heavily depends upon which clauses
share the bulk of their marked variables.

Obstacle 1. If two clauses C,C ′ share almost all of their marked variables, then knowing C is
dangerous drastically increases the probability that C ′ is also dangerous.

Indeed, if C is dangerous, then C is still not satisfied even though all of its marked variables have
assignments. Since C ′ shares almost all of its marked variables with C, this means C ′ has almost no
free marked variables left, leaving it with “few chances to become satisfied”. As an extremal case,
one can imagine a “sunflower” type of structure for the clauses, with the core entirely consisting
of marked variables. At the same time, there is hope, because even if C,C ′ only share at most a
constant fraction of their marked variables, then there are still “enough chances” for C ′ to become
satisfied. Furthermore, any such “sunflower” structure cannot have more than ≈ d petals due to
our degree assumption for the variables, so this extremal case isn’t a genuine barrier.

To control |Vdanger|, we will look for a “large” collection disjoint clauses in Cdanger which we will
charge for the dangerous variables. Disjointness will be key, since it will ensure each such clause
has a good probability of becoming satisfied. Following [Moi19], we formalize this as follows.
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Definition 4 (3-Tree). Let G = (V,E) be a graph. We call a subset of vertices T ⊆ V a 3-tree if
the following two properties hold:

1. “Independence”: Every pair of distinct vertices u, v ∈ T satisfies distG(u, v) ≥ 3. In other
words, T is an independent set in G2.

2. “Connectivity”: If we add an edge between every pair of distinct vertices u, v ∈ T satisfying
distG(u, v) = 3, then T becomes connected. In other words, G3[T ] is a connected graph.

We will use 3-trees in H2
Φ[V] to argue that |Vdanger| is small in expectation. The independence

property of 3-trees will allow us to reason about the probability of propagation, while the connec-
tivity property of 3-trees will allow us to control the number of such 3-trees. We have the following
claims, which follow straightforwardly from Definition 4.

Claim 3.4. H2
Φ[Vdanger] admits a 3-tree T of size at least Ω

(
1

d2k2

)
· |Vdanger| variables.

Proof Sketch. Use the same greedy algorithm as the one for constructing maximal independent sets
in bounded-degree graphs. Maximality of the output will certify the connectivity property.

Claim 3.5. • Disjointness: For any 3-tree T in H2
Φ[V] and any pair of distinct variables

x, x′ ∈ T , if x, x′ both participate in dangerous clauses C,C ′ respectively (i.e. they suffered
from Type II errors), then C ∩ C ′ = ∅. (This only requires Item 1.)

• Bounded Counts: The number of 3-trees of size-t in H2
Φ[V] containing x0 is at most

O(d3k3)t. (This only requires Item 2.)

Proof Sketch. For the first item, if C∩C ′ ̸= ∅, then any variable in C∩C ′ certifies that the distance
between x and x′ is at most 2 in H2

Φ[V], contradicting the “independence” property of 3-trees. The
second item just follows from the standard bound on the number of connected induced subgraphs
containing a particular vertex in a sparse graph [Bor+13]; note that T is connected in H2

Φ[V],
which has maximum degree O(d3k3).

Proof of Theorem 3.1. For any t ∈ N, we have that

Pr
[
|Vdanger| ≥ Cd2k2t

]
≤ Pr

[
∃ 3-tree T in H2

Φ[V] s.t. |T | = t, T ⊆ Vdanger
]

(Claim 3.4)

≤
∑

3-tree T in H2
Φ[V]

T ∋x0,|T |=t

Pr[T ⊆ Vdanger]

Our goal is to upper bound this by something exponentially small in t, which is clearly sufficient
(e.g. by the “layered cake representation” of an expectation). Fix some 3-tree T in H2

Φ[V] with
T ∋ x0 and |T | = t. We bound the probability that all variables in T become dangerous after the
above coupling process. Arbitrarily order the variables of T as x0, x1, . . . , xt−1. We have

Pr[T ⊆ Vdanger] =
t−1∏
j=0

Pr[xi dangerous | x0, . . . , xj−1 dangerous]

≤
t−1∏
j=0

(
Pr [xi Type I | x0, . . . , xj−1 ∈ Vdanger]

+ Pr [xi Type II | x0, . . . , xj−1 ∈ Vdanger]

)
. (Union Bound)

By Claim 3.5, these variables do not participate in clauses which intersect, and since our coupling
is faithful,

Pr [xi Type I | x0, . . . , xj−1 ∈ Vdanger] ≤ 1− exp

(
1

s

)
(Theorem 2.2)

≤ 2

s
,
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and

Pr [xi Type II | x0, . . . , xj−1 ∈ Vdanger] ≤ d ·
(
1

2
exp

(
1

s

))|C∩M|
(Theorem 2.2 and deg(xi) ≤ d)

≤ d ·
(
1

2
+

1

s

)αk

(Disjointness and α-marking guarantee)

It follows that for such T ,

Pr[T ⊆ Vdanger] ≤

(
2

s
+ d ·

(
1

2
+

1

s

)αk
)t

,

whence

Pr
[
|Vdanger| ≥ Cd2k2t

]
≤ #

{
3-tree T in H2

Φ[V]
T ∋x0,|T |=t

}
·

(
2

s
+ d ·

(
1

2
+

1

s

)αk
)t

≲

(
O(d3k3)

s
+O(d4k3) ·

(
1

2
+

1

s

)αk
)t

(Claim 3.5)

≤ 1

2t
. (Assuming 0 < α < 1/2 constant and s ≥ Ω

(
d4k5

)
)

as desired.

4 Random k-SAT
Since this line of research was initiated, recent works have turned to random k-CNF formulas, where
for each j = 1, . . . ,m, we add a clause on a uniformly random k-subset of V, with each variable
negated independently with probability 1/2. This setting is more technically challenging, since the
maximum degree of a variable now increases with n. Nonetheless, it is known that if the average
degree m

n is at most 2O(k), efficient sampling and counting algorithms for satisfying assignments
still exist. Very roughly speaking, one sampling method is to replace Glauber dynamics for the set
of marked variables M ⊆ V with an appropriate block dynamics which can still be implemented
efficiently via shattering-type lemmas, and then establish O(log n)-spectral independence for µM
[Gal+22; CMM23]. Many other ingenious algorithmic techniques have also been developed [Moi19;
GJL19; Gal+21; HWY23]. See also the recent breakthrough on the satisfiability threshold [DSS22].
For extensions of these ideas to other constraint satisfaction problems, see e.g. [JPV21; HWY22].
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