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A significant portion of the course will focus on studying Markov chains. Needless to say,
they are one of the most ubiquitous approaches to sampling in practice. As an example, Markov
chains have recently been deployed to detect gerrymandering in redistricting plans [DDS21]. The
high-level idea is one can compare a proposed plan with an ensemble of “typical” plans drawn from
some probability distribution. Markov chains are also famously used to model various card-shuffling
strategies (see e.g. [AD86]). Persi Diaconis also describes in his survey a very cool application of
Markov chains to decrypting secret messages in prisons [Dia09].

At a high level, the main idea is to run a stochastic process where simple, easy-to-compute,
random updates are repeatedly applied to some initial starting point. The hope is after enough it-
erations of this process, we’ve “added enough randomness in the right ways” so that the final iterate
is (approximately) distributed according to some target probability measure. Markov chains are
typically easy to design and implement in software, and demonstrate strong empirical performance
in downstream applications. However, despite these appealing features, one major difficulty is they
do not automatically come equipped with a testable criterion for termination. One of the major
goals of this course is to provide a mathematically rigorous toolbox for bounding the “mixing time”
of a Markov chain, which quantifies how long the chain should be run.

1 Basics of Markov Chains
Let Ω be a finite state space.

Definition 1 (Markov Chain). A (discrete-time) Markov chain on Ω is a sequence of random
variables {Xt}∞t=0 taking values in Ω satisfying the Markov property:

Pr[Xt = xt | X0 = x0, . . . , Xt−1 = xt] = Pr[Xt = xt | Xt−1 = xt−1], ∀t ≥ 0,∀x0, . . . , xt ∈ Ω.
(1)

In other words, the distribution of the next state Xt is independent of the history X0, . . . , Xt−2

given Xt−1. Throughout the course, our Markov chains will be time-homogeneous, meaning we
can describe the Markov chain by two parameters:

• First, we have a transition probability matrix (or Markov kernel) P ∈ RΩ×Ω
≥0 . The entries

P(x, y) (or P(x → y)) specify the transition probabilities Pr[Xt = y | Xt−1 = x] for all
x, y ∈ Ω. Thus, each row P(x → ·) is a probability distribution over Ω.

• Second, we have an initial distribution µ0 ∈ RΩ
≥0 specifying the law of X0.

Linear algebraically, the distribution µt = Law(Xt) of Xt over Ω is then given by

µt = µ0P
t

when viewed as row vectors. We’ll often refer to P as the Markov chain itself (even if µ0 is
unspecified) since P is more important. One should conceptually imagine the Markov chain as a
random walk on Ω, where we make Ω into a directed graph with a directed edge (x → y) having
weight P(x → y) for every x, y ∈ Ω.

We’ll use the following as a running example.

1



Example 1 (Random Walks on Graphs). Let G = (V,E) be an undirected graph. The simple
random walk on G is a Markov chain with state space Ω = V described by the following process:
If the current vertex is u ∈ V , then we transition to a uniformly random neighbor of u. We can
write down the transition probability matrix PG of this Markov chain as

PG = D−1
G AG,

where AG denotes the {0, 1}-adjacency matrix of G, and DG = diag(degG(v) : v ∈ V ) is a diagonal
matrix which normalizes everything so that the rows of PG sum to 1.

1.1 Stationarity and Convergence
Having defined what a Markov chain is, let us now build up the connection to sampling.

Definition 2 (Stationary/Equilibrium Distribution). A probability measure µ on Ω is stationary
w.r.t. a Markov chain P if µP = µ.

For instance, if the initial distribution µ0 is stationary w.r.t. P, then every state Xt in the
stochastic process {Xt}∞t=0 is distributed according to µ0. Continuing Example 1, if we run the
simple random walk on G = (V,E) for a long time, intuitively we expect vertices with high degree
will be visited more often. If we define the distribution µ on V by µ(v) ∝ degG(v), then µ is
stationary w.r.t. PG.

It turns out that in general, a stationary distribution always exists.

Lemma 1.1. Every Markov chain P has at least one stationary distribution.

We prove this in Appendix A. Ideally, we’d like our Markov chains to have a unique stationary
distribution. The following gives a criterion for uniqueness.

Definition 3 (Ergodicity). Fix a Markov chain P on a finite state space Ω. We say P is ergodic
if P satisfies both of the following properties:

• Irreducibility: P is irreducible if for all x, y ∈ Ω, there exists t ≥ 0 such that Pt(x → y) > 0.
In other words, the underlying weighted directed graph of P is strongly connected.

• Aperiodicity: The period of a state x ∈ Ω under P is defined as the greatest common divisor
of {t ≥ 1 : Pt(x, x) > 0}. We say P is aperiodic if all states have period 1.

Remark 1. Note that ergodicity is actually a very weak and easy-to-satisfy property. For irreducibil-
ity, we just need connectivity of Ω under the transitions of P. One way to ensure aperiodicity is
to ensure that P(x, x) > 0 for all x ∈ Ω. In particular, any Markov chain P, aperiodic or not, can
be made into an “equivalent” aperiodic Markov chain by replacing P with Id+P

2 , where Id is the
Ω×Ω identity matrix. This is sometimes called the lazification of P, since in each step, there is a
1
2 -probability of staying in the same state. Essentially all of the usual properties of P are preserved
when looking at Id+P

2 .

Lemma 1.2. Let P be a Markov chain on a finite state space Ω. If P is irreducible and aperiodic,
then there exists t∗ such that for all x, y ∈ Ω, Pt∗(x → y) > 0.1

We prove this in Appendix A.

Theorem 1.3 (Fundamental Theorem of Markov Chains; see e.g. [LPW17]). Let P be an ergodic
Markov chain on a state space Ω. Then P has a unique stationary distribution µ on Ω. Further-
more, for every initial distribution µ0, the distribution µt = µ0P

t of Xt converges (pointwise) to µ
as t → ∞.

We will prove this theorem in the next lecture.
1The latter condition is the more “complete” definition of ergodicity.
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The Markov Chain Monte Carlo Paradigm Theorem 1.3 highlights the relevance of Markov
chains to sampling. To sample from some complicated probability distribution µ on some compli-
cated state space Ω, it suffices to design an ergodic Markov chain P on Ω such that:

• µ is its equilibrium distribution, and

• the transitions of P are efficiently implementable.

The algorithm is then to select an arbitrary initial state X0 ∈ Ω, simulate P started at X0 for T
steps, and output the final state XT as your sample. Theorem 1.3 guarantees that if T is sufficiently
large, then Law(XT ) is “close” to µ. Of course, the challenge then becomes how to choose T . This
will be the focus of a nontrivial fraction of the course.

1.2 Reversible Markov Chains
It turns out, if you’re given a Markov chain “in the wild”, it is a highly nontrivial task to determine
its stationary distribution. However, there is a large class of Markov chains for which this turns
out to be easy.

Definition 4 (Reversibility). We say a Markov chain P is reversible w.r.t. a distribution µ if
together they satisfy the detailed balance condition:

µ(x) · P(x → y) = µ(y) · P(y → x), ∀x, y ∈ Ω.

Lemma 1.4. Let P be a Markov chain reversible w.r.t. a distribution µ on Ω. Then µ is stationary
w.r.t. P.

We prove this in Appendix A.
For instance, if P is symmetric, i.e. P(x → y) = P(y → x) for all x, y ∈ Ω, then the uniform

measure over Ω is stationary w.r.t. P. Again, returning to Example 1, the simple random walk
on an undirected graph G = (V,E) is reversible w.r.t. the distribution µ(v) ∝ degG(v). This
is, in some sense, the “only” example of a reversible Markov chain: If P is a reversible w.r.t. µ,
then we can define a weighted graph on Ω, where we have an edge {x, y} connecting x, y ∈ Ω if
P(x → y) > 0. Furthermore, we assign this edge weight µ(x) · P(x → y). The analogous simple
random walk on this weighted graph recovers the Markov chain P.

For reversible chains (e.g. simple random walk on a graph G), irreducibility is equivalent to
connectivity of the underlying graph. Similarly, aperiodicity is equivalent to the underlying graph
being not bipartite. Throughout this course, all of our Markov chains will be reversible. This
reversibility condition can be interpreted linear algebraically as saying the matrix P is self-adjoint
w.r.t. the inner product ⟨f, g⟩µ

def
=

∑
x∈Ω µ(x)f(x)g(x) = Eµ[fg] induced by µ on {f : Ω → R} ∼=

RΩ. In particular, P has all real eigenvalues. We’ll say more about this later.

2 Markov Chain Examples
We now give some examples of useful Markov chains in various settings.

2.1 Glauber Dynamics
Let µ be a probability measure on {±1}n. We define a local Markov chain which changes only a
single coordinate in each step called Glauber dynamics. For each σ ∈ {±1}n, we write σ⊕i for the
unique configuration where we replace σi by −σi, while keeping all other coordinates fixed. The
(heat-bath) Glauber dynamics (sometimes called the Gibbs sampler, especially in machine learning
circles) is described by the following two-step process:

1. Select a coordinate i ∈ [n] uniformly at random.

2. Flip coordinate i with probability µ(σ⊕i)
µ(σ)+µ(σ⊕i) .

Thus, the transition probabilities are given by

PGD(σ → σ⊕i) =
1

n
· µ(σ⊕i)

µ(σ) + µ(σ⊕i)
, ∀i ∈ [n].
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With all of the remaining probability, we stay at the current state. Since

µ(σ) · PGD(σ → σ⊕i) =
1

n
· µ(σ) · µ(σ⊕i)

µ(σ) + µ(σ⊕i)
= µ(σ⊕i) · PGD(σ⊕i → σ),

PGD is reversible w.r.t. µ by construction.
We note that Glauber dynamics generalizes to any probability distribution over a product space

[q]n, where [q] = {1, . . . , q} and q ≥ 2. If σ ∈ [q]n and c ∈ [q], write σi,c ∈ [q]n for the unique
configuration obtained by replacing σi with c and keeping other coordinates fixed. Then

PGD(σ → σi,c) =
µ(σi,c)∑

b∈[q] µ(σ
i,b)

, ∀c ∈ [q].

In other words, in each step, we select a uniformly random coordinate i ∈ [n] and resample σi

conditioned on the current assignments for all other coordinates.

2.2 Perfect Matchings via Random Transpositions
Let G = (V,E) be a bipartite graph with bipartition L ⊔ R and |L| = |R|. Let Ω be the set
of perfect matchings on G, i.e. subsets of edges M ⊆ E such that every vertex in V is incident
to exactly one edge in M . We define a Markov chain P with uniform stationary distribution as
follows:

• Select two distinct edges u1v1, u2v2 ∈ M uniformly at random. Note that all four vertices
u1, u2 ∈ L and v1, v2 ∈ R must all be distinct by the matching constraint.

• If M ∪ {u1v2, u2v1} \ {u1v1, u2v2} is also a perfect matching, then we perform the swap, i.e.
transition to this new matching. Otherwise, we stay at M .

It is straightforward to check that this Markov chain is reversible w.r.t. the uniform distribution
over perfect matchings.

Unfortunately, for general bipartite graphs, the Markov chain is not even connected. One
example of this is a long even-length cycle C2n. In this case, there are just two perfect matchings
which are completely disjoint from each other. Hence, you cannot possibly reach one matching
from the other via local moves like those in the swap Markov chain we just defined.

2.3 The Metropolis Filter
Let Ω be a giant state space, and let w : Ω → R≥0 be a nonnegative weight function. Our goal is
to design an ergodic Markov chain with unique stationary distribution µ(x) ∝ w(x). Reversibiliity
gives us a simple recipe to do this.

We start by constructing a Markov chain Q on Ω which is symmetric, i.e. Q(x → y) = Q(y → x)
for all x, y ∈ Ω. Note that the uniform distribution over Ω is stationary w.r.t. Q, not µ. Effectively,
this Q endows Ω with a neighborhood structure, and all we ask is that Ω is connected under Q. For
each x ∈ Ω, the transition distribution Q(x → ·) is called the proposal distribution.

With this in hand, we can then add a Metropolis filter on top of Q to correct its stationary
distribution. More specifically, to take a step from the current state x, we first draw a sample
y ∼ Q(x → ·) (“the proposal”). We then either transition to y with probability min

{
1, w(y)

w(x)

}
,

or stay at x with the remaining probability. In other words, our new Markov chain P will have
transitions

P(x → y) =

{
Q(x → y) ·min

{
1, w(y)

w(x)

}
, if y ̸= x

1−
∑

z ̸=x P(x → z), if y = x.

Lemma 2.1. Let Q be any symmetric Markov chain. Then the “Metropolized” chain P is reversible
w.r.t. µ(x) ∝ w(x).
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Proof. We verify detailed balanced. If x ̸= y, then

w(x) · P(x → y) = w(x) ·min

{
1,

w(y)

w(x)

}
·Q(x → y)

= min{w(x), w(y)} ·Q(x → y)

= min{w(x), w(y)} ·Q(y → x) (Symmetry of Q)

= w(y) ·min

{
1,

w(x)

w(y)

}
·Q(y → x)

= w(y) · P(y → x).

3 Quantifying Speed of Convergence: Mixing Times
Now that we can design ergodic Markov chains with the correct stationary distribution, the goal is
quantify how quickly the chain equilibriates. This is crucial since it directly controls the efficiency
of our Markov chain sampling algorithms, as well as the “accuracy” of the samples we get out.

Definition 5 ((Total Variation) Mixing Time). Fix an ergodic Markov chain P with stationary
distribution µ on a state space Ω. Let ϵ > 0 be an error parameter. We define the ϵ-mixing time
of P (with initial distribution µ0) by

Tmix(ϵ;µ0,P)
def
= min

{
t ≥ 0 :

∥∥µ0P
t − µ

∥∥
TV

≤ ϵ
}

Tmix(ϵ;P)
def
= sup

µ0

Tmix(ϵ;µ0,P).

When the Markov chain P is clear from context, we drop the P. We define the total variation
mixing time of P to be Tmix

def
= Tmix(1/4).

The constant 1/4 is arbitrary, and can be chosen to be any constant less than 1/2. We define it
this way because Tmix(ϵ) ≲ Tmix · log(1/ϵ); see e.g. [LPW17]. A Markov chain whose mixing time
is bounded by a polynomial in the size of the problem input is said to be rapidly mixing (or fast
mixing); otherwise, it is torpidly mixing (or slow mixing). Of course, now the goal is to construct
ergodic Markov chains which we can certify mixing time upper bounds. Note that one can define
a version of mixing time with respect to any metric on probability measures (e.g. Wasserstein
distance, KL-divergence, χ2-divergence, etc.) in the obvious way.

We conclude with the following useful fact.

Lemma 3.1 (Data Processing Inequality). Let µ, ν be two probability measures on a finite state
space Ω, and let P be a Markov chain on Ω. Then

∥µP− νP∥TV ≤ ∥µ− ν∥TV .

Proof.

∥µP− νP∥TV =
1

2

∑
x∈Ω

|(µP)(x)− (νP)(x)|

=
1

2

∑
x∈Ω

∣∣∣∣∣∣
∑
y∈Ω

P(y → x) · (µ(y)− ν(y))

∣∣∣∣∣∣
≤ 1

2

∑
x∈Ω

∑
y∈Ω

P(y → x) · |µ(y)− ν(y)|

=
1

2

∑
y∈Ω

|µ(y)− ν(y)|
∑
x∈Ω

P(y → x)︸ ︷︷ ︸
=1

= ∥µ− ν∥TV .
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Taking µ be stationary w.r.t. P, this lemma says that applying one step of P to any other
distribution ν cannot increase its total variation distance from µ. So, informally, this says that
P cannot “unmix” a distribution. We note that Lemma 3.1 generalizes to any notion “distance”
between probability measures which satisfies suitable convexity properties (e.g. KL-divergence,
χ2-divergence, or φ-divergences more broadly for convex φ).
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A Unfinished Proofs
Proof of Lemma 1.1. Since the fixed point equation µP = µ is an eigenvalue problem, we first find
some vector v ∈ RΩ such that vP = v; this vector v might have negative entries, but we’ll use this
v to construct our distribution µ. Since P has rows summing to 1, P1 = 1; in particular, P has
eigenvalue 1. Since P and P⊤ have the same eigenvalues (e.g. they have the same characteristic
polynomials), it follows that P⊤ has eigenvalue 1, i.e. there exists some v ∈ RΩ such that vP = v.

Now define a distribution µ via µ(x) ∝ |v(x)|. We claim that µP = µ. To see this, observe that

|v(x)| =

∣∣∣∣∣∣
∑
y∈Ω

v(y) · P(y → x)

∣∣∣∣∣∣ (Using vP = v)

≤
∑
y∈Ω

|v(y)| · P(y → x), ∀x ∈ Ω.

We claim that the above inequality must actually be an equality; if we can show this, then µP = µ
holds since we just scale both sides by the same constant

∑
x∈Ω |v(x)|. To see this, observe that if

the inequality is strict for any x ∈ Ω, then summing over all x ∈ Ω, we would obtain∑
x∈Ω

|v(x)| <
∑
x∈Ω

∑
y∈Ω

|v(y)| · P(y → x) =
∑
y∈Ω

|v(y)|
∑
x∈Ω

P(y → x)︸ ︷︷ ︸
=1

=
∑
y∈Ω

|v(y)| ,

which is a contradiction. Hence, we must have |v(x)| =
∑

y∈Ω |v(y)| · P(y → x) for all x ∈ Ω, and
we are done.

Proof of Lemma 1.2. The key to the proof will be the simple inequality Ps+ℓ(x, y) ≥ Ps(x, x) ·
Pℓ(x, y), which holds for all x, y ∈ Ω and all s, ℓ ∈ N. In particular, if we can guarantee that for
every x ∈ Ω, there exists some time s∗(x) such that Ps(x, x) > 0 for every s ≥ s∗(x), then letting
ℓ∗(x, y) denote the first time ℓ such that Pℓ(x, y) > 0, we have that for all ℓ ≥ ℓ∗(x, y),

Ps∗(x)+ℓ(x, y) = Ps∗(x)+ℓ−ℓ∗(x,y)(x, x) · Pℓ∗(x,y)(x, y) > 0.

We could then take t∗ = maxx s
∗(x) + maxx,y ℓ

∗(x, y).
To prove existence of this s∗(x), the key is again that if Pj(x, x) > 0 and Pk(x, x) > 0, then

Pj+k(x, x) > 0 as well. Since P is aperiodic, there must exist j, k ∈ N such that Pj(x, x) > 0,
Pk(x, x) > 0 and gcd(j, k) = 1. The final number-theoretic claim is that s∗(x) = lcm(j, k) = jk
suffices, which can be proved via Bézout’s Lemma.
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Proof of Lemma 1.4. For every x ∈ Ω,

(µP)(x) =
∑
y∈Ω

µ(y) · P(y → x)

=
∑
y∈Ω

µ(x) · P(x → y) (Reversibility)

= µ(x)
∑
y∈Ω

P(x → y)

= µ(x).

Since x ∈ Ω was arbitrary, µP = µ as desired.
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