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In this lecture, we return to coupling-based methods for establishing spectral independence.
Previously, we saw how to bound the transportation distance between two distributions µ, ν as-
suming there is a local Markov chain for µ which admits a path coupling proof of rapid mixing.
Here, we will directly build couplings recursively, and highlight the flexibility of this technique.
For a distribution µ on [q]n, recall that we say µ is η-coupling independent if for all i ∈ [n] and
b, c ∈ [q],

W1

(
µi←b, µi←c

)
≤ 1 + η.

Throughout, all instantiations of Wasserstein distance are w.r.t. the Hamming metric. We pre-
viously proved that η-coupling independence implies η-spectral independence. Since we’ll mainly
consider iteratively constructed couplings in graphical settings, and since we are aiming to mini-
mize Hamming distance, i.e. the number of disagreements between two samples, we broadly refer
to the class of methods in this lecture as “disagreement percolation”: Our goal is to prevent the
components of disagreeing vertices from growing unboundedly.

1 Warm-Up: Monomer-Dimer Model
To illustrate the basic idea, let us return to the classic monomer-dimer model. Given a graph
G = (V,E) and an activity parameter λ ≥ 0, the monomer-dimer Gibbs distribution is given by

µ(M) ∝ λ|M |, ∀ matchings M ⊆ E.

Lemma 1.1. Let µ be the monomer-dimer Gibbs distribution with activity λ ≥ 0 on a graph
G = (V,E) of maximum degree ∆. Then for every e ∈ E,

W1

(
µe←in, µe←out

)
≤ O

(
λ2∆2

)
,

and µ is O
(
λ2∆2

)
-spectrally independent.

There are many other ways of proving the spectral independence claim (e.g. via correlation
decay, zero-freeness, etc.), although these don’t yield coupling independence. Combined with the
local-to-global theorems from the previous lectures, this immediately implies O(n log n) mixing
for Glauber dynamics on matchings in bounded-degree graphs for arbitrary λ ≥ 0. Path coupling
notably fails beyond a certain threshold of λ, and so the previous approach for establishing coupling
independence using contractive Markov chains does not work. We build the coupling directly.

Proof of Lemma 1.1. Fix an edge e ∈ E. Our goal is to design a process/algorithm, not necessarily
efficient, which jointly samples a pair τ, σ : E → {in, out} such that marginally τ ∼ µe←in, σ ∼
µe←out, and dH (τ, σ) is small in expectation. To achieve this, we sample τ, σ iteratively. Let us first
give a high-level skeleton of the construction. Let e1, . . . , em be some (possibly random) ordering
of the edges of E with e1 = e, which we have yet to specify. We build a random sequence τk, σk :
{e1, . . . , ek} → {in, out}, with the invariant that τk(ek) ∼ µ

τk−1
ek and σk(ek) ∼ µ

σk−1
ek for every k; in

particular, τ1(e1) = in and σ1(e1) = out with probability 1. This enforces τ ∼ µe←in, σ ∼ µe←out,
while allowing us to locally argue about how the set of disagreements evolves in each step.

Now let us implement it in full, with some minor deviations from the above outline. We
actually traverse the vertices v1, . . . , vn in some order, which will be intertwined with our sequence
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of sampled partial configurations. For each vertex v ∈ V , write E(v) = {e ∈ E : e ∼ v} for
its set of incident edges. We build this ordering inductively as follows: Assume we have visited
vertices v1, . . . , vℓ already, and built up two partial configurations τℓ, σℓ : Eℓ → {in, out} where
Eℓ =

⋃ℓ
i=1 E(vi) is the set of visited edges. Let D(ℓ)

def
= {f ∈ Eℓ : τℓ(f) ̸= σℓ(f)} denote the

current set of disagreements.

• Phase 1: Suppose there is an unvisited vertex v which is incident to some edge of disagree-
ment e ∈ D(ℓ). We optimally couple µτℓ

E(v)\Eℓ
and µσℓ

E(v)\Eℓ
. This determines the assignments

of all edges incident to v, thus extending Eℓ, τℓ, σℓ, D(ℓ) by (at most) |E(v) \ Eℓ| many edges.
Set vℓ+1 = v and mark v as visited.

• Phase 2: Otherwise, there is no such v. Then either all vertices and edges have been visited,
in which case the coupling terminates and have our samples τ, σ, or there are no longer any
vertices incident to edges of disagreement. In the latter case, we optimally couple µτℓ , µσℓ

and again terminate the coupling.

Note that we are traversing G and ensuring that each time a new vertex is visited, all of its incident
edges receive assignments from {in, out} before moving on to the next vertex. This traversal is
almost but not exactly the same as depth-first traversal. Obviously, the set of visited vertices and
edges is always connected.

Claim 1.2 (Structure of the Disagreements). Under this coupling, for any new vertex v visited
during Phase 1, at most one of its incident unvisited edges is added to the disagreement set.
Furthermore, this occurs with probability at most λ∆

1+λ∆ . Note this implies that D(ℓ) is a single
path or cycle, for every ℓ.

Proof. Let v be such a vertex and let ℓ be the current step at which we discover v. Let e be any
edge of disagreement in D(ℓ) which is incident to v. Since τℓ(e) ̸= σℓ(e), one of them must be in;
without loss of generality, assume τℓ(e) = in, σℓ(e) = out. Then under µτℓ , all edges incident to
v must be out with probability 1 by the matching constraint. Similarly, under µσℓ , at most one
edge f∗ ∈ E(v) \ Eℓ can be assigned in, giving our new disagreeing edge; all other edges must be
assigned out w.r.t. both τℓ and σℓ. This establishes the first claim.

For the second claim, let H denote the graph obtained by deleting σ−1ℓ (out) and all vertices
incident to an edge in σ−1ℓ (in). Note that the probability of there being such a new disagreeing
edge f∗ is given by

Pr
M∼µσℓ

[f ∈M for some f ∼ v, f /∈ Eℓ] =
λ
∑

u∈H:u∼v ZH−u−v(λ)

ZH−v(λ) + λ
∑

u∈H:u∼v ZH−u−v(λ)
.

Every matching which contains some f ∼ v also yields a matching not saturating v, since we can
just remove f . Hence, ZH−v(λ) ≥ ZH−u−v(λ) for all u ∼ v in H, and we see that this marginal
probability is at most λ·|NH(v)|

1+λ·|NH(v)| ≤
λ∆

1+λ∆ . The final claim that D(ℓ) is always either a path or
cycle follows immediately from the first claim.

Claim 1.3 (Isolating the Disagreements). Suppose we have entered Phase 2 at some step ℓ. Then
we can sample τ ∼ µτℓ , σ ∼ µσℓ such that τ(e) = σ(e) for all e /∈ Eℓ with probability 1. In other
words, we can perfectly couple all remaining unvisited edges once we have entered Phase 2, which
must occur entirely after Phase 1.

Proof. We claim that the set of disagreeing edges D(ℓ) must be completely surrounded by edges
which are pinned to out in both τℓ, σℓ. To see this, note that if we are in Phase 2, then for any visited
vertex, we have completely determined the status of its incident edges in both τk, σk. In particular,
if e is any edge not in D(ℓ) but incident to some disagreeing edge f , then τℓ(e), σℓ(e) have been
determined. Furthermore, we claim that τℓ(e) = σℓ(e) = out. Indeed, since τℓ(f) ̸= σℓ(f), either
τℓ(f) = in or σℓ(f) = in, which forces τℓ(e) = out or σℓ(e) = out, respectively. But because e itself
is not disagreeing, we obtain τℓ(e) = σℓ(e) = out.

Now let H denote the graph obtained by deleting all vertices participating in a disagreeing
edge. The above argument implies that the conditional marginals µτℓ

E\Eℓ
, µσℓ

E\Eℓ
are both just the

monomer-dimer Gibbs distribution µH of H. In particular, they are identical distributions and
can be coupled perfectly.
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In light of Claim 1.2 and Claim 1.3, let Aℓ denote the event that Phase 1 terminates after
completely processing the ℓth visited vertex. Then

E [dH(τ, σ)] =

n∑
ℓ=1

E [dH (τ, σ) | Aℓ] · Pr[Aℓ] (Claim 1.3)

≲
n∑

ℓ=1

ℓ · Pr[Aℓ] (Claim 1.2: First part)

≲
∞∑
ℓ=1

ℓ ·
(

λ∆

1 + λ∆

)ℓ

(Claim 1.2: Second part)

≤ O
(
λ2∆2

)
.

This coupling process, and modifications of it, are the basis of [CZ23; CG23]. The main
application in [CZ23] is to the even subgraphs model, which recall is intimately related to the fer-
romagnetic Ising model. [CG23] studied an extension of matchings and edge covers to b-matchings
and b-edge covers, where every vertex is incident to at most (resp. at least) b edges. They gener-
alize this considerably to “Holant-type” problems, which were previously studied through the lens
of zero-freeness. These ideas will also be important when we study the sampling Lovász Local
Lemma.

2 Spin Systems on Graphs with Large Girth
In the remainder of this lecture, we study multi-spin systems (e.g. proper colorings) in graphs. We
use a similar coupling method to give a general reduction from spectral independence on graphs
of sufficiently large (but constant) girth,1 to correlation decay on trees. When the number of
spins is 2, this was previously achieved using the beautiful self-avoiding walk tree/computation
tree gadget, even without a girth assumption [Wei06]. Unfortunately, even though there is an
analogous computation tree for multi-spin systems [GK12; LY13; GKM15], we do not know how to
combine this with contraction of the tree recursion to deduce spectral independence. Very roughly
speaking, the main obstacle is that the computation tree for q-spin systems recursively branches
into ∆q many distinct problem subinstances, rather than ∆. While this remains an outstanding
open problem (as of this writing), we show here how to circumvent this barrier if we impose
additional girth lower bounds.

Theorem 2.1 (Very Informal; [Che+23]). Suppose a spin system (e.g. proper colorings) has
“strong exponential decay of correlations” on all trees of maximum degree ∆. Then there exists a
constant g = g(∆) > 0 such that the spin system has O(1)-spectral independence for all graphs of
maximum degree ∆ and girth at least g.

Remark 1. We will see that g(∆) is approximately of order roughly log∆, but for now, let us leave
it as a parameter to be determined later.

For concreteness, we specialize our discussion to the case of proper q-colorings of graphs. For
∆, q ∈ N fixed, which will be clear from context, we write µ to denote the uniform measure over
proper q-colorings of a graph G = (V,E) of maximum degree ≤ ∆. One significant corollary of
Theorem 2.1 is fast mixing for proper colorings almost down to the conjectured phase transition
threshold ∆+ 2,2 at least when the graph has sufficiently large girth.

Corollary 2.2 ([Che+23]). Fix arbitrary constants ∆ ∈ N and ϵ > 0. Then for every graph
G = (V,E) of maximum degree ∆ and girth Ω̃

(
1
ϵ2 log∆

)
, and every integer q ≥ (1 + ϵ)∆, the

uniform distribution µ over proper q-colorings of G is O(1)-spectral independent. Furthermore,
Glauber dynamics mixes in O(n log n)-steps.

Our main goal in this section is to establish Theorem 2.1. To make things more precise, “strong
exponential decay of correlations” will mean the following:

1Recall that the girth of a graph is the length of its shortest cycle.
2For Glauber dynamics, the conjectured threshold for fast mixing is ∆ + 2, while for efficient sampling, it is

∆+ 1.
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• Strong Spatial Mixing: There exists constants 0 < δ < 1 and CSSM > 0 such that for
every color c ∈ [q], every vertex r ∈ V , and every pair of boundary conditions τ, σ : Λ→ [q]
where Λ ⊆ V \ {r}, we have that∣∣∣∣µτ

r (c)

µσ
r (c)

− 1

∣∣∣∣ ≤ CSSM · (1− δ)dist(r,Λτ,σ), (1)

where Λτ,σ = {v ∈ Λ : τ(v) ̸= σ(v)}. (This differs slightly from the notion of strong spatial
mixing we defined previously, but only by constant factor losses in CSSM.)

• Total Influence Decay: There exist constants 0 < δ < 1 and CTID > 0 such that for every
vertex r ∈ V , every boundary condition τ : Λ → [q] where Λ ⊆ V \ {r}, and every radius
R > 0, we have that ∑

v∈V \Λ
dist(r,v)=R

∥∥µτ,r←b
v − µτ,r←c

v

∥∥
TV
≤ CTID · (1− δ)R. (2)

In the setting of trees, both of these properties are directly implied by contraction of the tree
recursion w.r.t. some potential function, even if there are q-spins with q > 2. This contraction was
established for colorings in [Che+23].

Our main goal is to translate strong spatial mixing and total influence decay on trees into
influence bounds for graphs of sufficiently large girth. The vague intuition here is that because
the graph has large girth, the ball around every vertex is a tree, for which we will try to apply
spatial mixing and total influence decay for trees. It is not at all clear that this should be possible,
especially since we are only assuming the girth is some (possibly large) constant, which notably
does not scale as the size of the graph increases. We will use a disagreement percolation argument.
Throughout, we write B(r,R)

def
= {v : dist(r, v) < R} for the (open) radius-R ball around r;

similarly, we write S(r,R)
def
= {v : dist(r, v) = R} for the associated sphere.

2.1 A First Attempt: One-Shot Coupling the Boundary of a Ball
Let us make a first attempt at bounding the influence of a single vertex in a graph of large girth.

Lemma 2.3. Suppose Strong Spatial Mixing (see Eq. (1)) holds for the uniform distribution over
proper q-colorings of any tree of maximum degree ∆. Let G = (V,E) be a graph of maximum
degree ∆ and girth g > 0. Then for every vertex r ∈ V , b, c ∈ [q], every radius R < g/2, and every
boundary condition τ : Λ→ [q] where Λ ⊆ V \ {r}, we have∥∥∥µτ,r←b

S(r,R)\Λ − µτ,r←c
S(r,R)\Λ

∥∥∥
TV

≲ CSSM(1− δ)R.

Note that the threshold g/2 is chosen precisely so that the induced subgraph on the ball
B(r, g/2) is a tree. A proof of Lemma 2.3 is provided in Appendix A. The trick is to apply Bayes’
Theorem to convert the left-hand side into the influence of S(r,R) \Λ onto r. Since this influence
is defined by pinning all vertices in S(r,R) \ Λ, and since the induced subgraph on B(r,R) is a
tree, we can directly apply strong spatial mixing on trees.

In light of Lemma 2.3, a natural attempt at coupling µτ,r←b, µτ,r←c is to first sample σ, σ′ :
S(r,R) \ Λ → [q] from an optimal coupling of the conditional marginals µτ,r←b

S(r,R)\Λ, µ
τ,r←c
S(r,R)\Λ, and

then optimally couple µτ,σ and µτ,σ′
.

• Good Case: If σ = σ′, then all disagreements will be confined to B(r,R). Indeed,
µτ,σ
V \B(r,R) = µτ,σ′

V \B(r,R), and so we can couple all vertices outside B(r,R) perfectly. This
would yield a Hamming distance of at most ∆R ≤ ∆g/2 ≤ O(1). By Lemma 2.3, this
happens with good (but constant) probability, since g is large (but constant).

• Bad Case: Otherwise σ ̸= σ′. We could try to apply Triangle Inequality to Wasserstein
distance, flipping colors from σ to σ′ one vertex at a time, and then recursively coupling
the new instances. But Lemma 2.3 unfortunately gives us no control on the number of
disagreeing vertices in S(r,R) \Λ; there could be as many as ∆R, in which case the number
of disagreements could propagate uncontrollably. This happens with small (but constant)
probability, so we’re doomed in this case.
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2.2 A More Refined Step-by-Step Coupling
Lemma 2.4. Suppose Strong Spatial Mixing (see Eq. (1)) and Total Influence Decay (see Eq. (2))
both hold for the uniform distribution over proper q-colorings of any tree of maximum degree ∆.
Let G = (V,E) be a graph of maximum degree ∆ and girth g > 0. Then for every vertex r ∈ V ,
b, c ∈ [q], every radius R < g/2, and every boundary condition τ : Λ→ [q] where Λ ⊆ V \ {r}, we
have the influence decay bound∑

v∈S(r,R)\Λ

∥∥µτ,r←b
v − µτ,r←c

v

∥∥
TV

≲ CTID(1− δ)R + CSSM(1− δ)g/2∆R. (3)

The first term CTID(1 − δ)R is the bound we would get if G was literally a tree, or if we were
allowed to truncate to B(r,R), since this is just total influence decay for trees. We can implement
this truncation to radius-R by pinning vertices in the boundary S(r, g/2) \ Λ. While this is not a
true truncation, vertices within radius R≪ g/2 intuitively cannot tell the difference. This can be
formalized by taking advantage of strong spatial mixing on trees, giving an additional error term
of 2CSSM(1− δ)g/2∆R. Note that the ∆R factor tells us that vertices close enough to the boundary
S(r, g/2) definitely do feel the difference between a genuine truncation and one achieved by pinning
vertices in S(r, g/2). Therefore, we’ll eventually take R to be much smaller than g/2. The precise
proof of Lemma 2.4 is implemented in Appendix A, using Lemma 2.3 as a building block.

Lemma 2.4 gives us “smoother”/“more fine-grained” control compared to Lemma 2.3. The latter
only tells us that no discrepancies appear in S(r,R) with good (but still constant) probability;
however, if any discrepancies do appear, we have no control on how many. In contrast, Lemma 2.4
already says that if we pick a uniformly random vertex v and couple the conditional marginals
optimally, then we get a discrepancy with probability ≤ Small Constant

|S(r,R)| ; since this probability is
inversely proportional to the size of the boundary, at a high level, one can then imagine iterating
this for the remaining vertices in S(r,R), going in a random order. We will use bounds of the form
in Eq. (3) to build a coupling certifying O(1)-coupling independence. This is formalized as follows.

Theorem 2.5 ([Che+23]). Suppose there exists a radius 0 < R < g/2 and an ϵ ≲ 1
R log∆ such

that the following holds: For every graph G = (V,E) of maximum degree ∆, every vertex r ∈ V ,
b, c ∈ [q], and every boundary condition τ : Λ→ [q] where Λ ⊆ V \{r}, we have the influence bound∑

v∈S(r,R)\Λ

∥∥µτ,r←b
v − µτ,r←c

v

∥∥
TV
≤ ϵ. (4)

Then for every r ∈ V , b, c ∈ [q], and τ : Λ→ [q],

W1

(
µτ,r←b, µτ,r←c

)
≤ O

(
∆R

)
,

and µτ is O(∆R)-spectrally independent.

Remark 2. Note that this theorem itself does not require a girth lower bound, nor correlation
decay. However, establishing Eq. (4) is highly nontrivial. Furthermore, it is important that we
assume Eq. (4) holds for all pinnings τ . These can be achieved with through correlation decay and
a girth assumption, and then applying Lemma 2.4 with R and g sufficiently large (but constant).
Finally, we emphasize again that the results presented in this section are not specific to colorings;
they work for essentially any q-spin system.

Proof of Theorem 2.5. Given an arbitrary instance of the problem, i.e. a graph G = (V,E) of
maximum degree ∆, a vertex r ∈ V , a boundary condition τ : Λ → [q] where Λ ⊆ V \ {r}, and a
pair of distinct colors b, c ∈ [q], we give a general recipe for coupling µτ,r←b, µτ,r←c:

• “Base” Case: Suppose there is no vertex in S(r,R) \ Λ. Then we arbitrarily couple all un-
pinned vertices within B(r,R), and perfectly couple all unpinned vertices outside of B(r,R).
The latter is possible just by conditional independence.

• “Recursive” Case: Select a uniformly random vertex v ∈ S(r,R) \Λ. Let (b′, c′) be drawn
from a TV-optimal coupling between µτ,r←b

v , µτ,r←c
v , and use a W1-optimal coupling between

µτ,r←b,v←b′

v and µτ,r←c,v←c′

v .

5



Of course, one cannot algorithmically implement this coupling efficiently, but this is not an is-
sue since again, we’re just using this as a proof technique. While we don’t have access to
the W1-optimal coupling between µτ,r←b,v←b′

v , µτ,r←c,v←c′

v in the second step, we can (recur-
sively) produce some coupling of µτ,r←b,v←b′

v , µτ,r←c,v←c′

v which gives us upper bounds: We can
just use the exact procedure we just defined to couple µτ,r←b,v←b′

v , µτ,r←b,v←c′

v and separately
couple µτ,r←b,v←c′

v , µτ,r←c,v←c′

v . Composing these two couplings then gives a coupling between
µτ,r←b,v←b′

v , µτ,r←c,v←c′

v , and we can use the Triangle Inequality.
More formally, for a fixed vertex v, let ξv denote the TV-optimal coupling between µτ,r←b

v , µτ,r←c
v

from the second step, and write (b′, c′) for the random pair of colors drawn from this coupling.
Then

W1

(
µτ,r←b, µτ,r←c

)
≤ Ev∈S(r,R)\Λ

[
Pr
ξv
[b′ = c′] ·W1

(
µτ,r←b,v←b′

v , µτ,r←c,v←c′

v

)
︸ ︷︷ ︸

(A)

+ Pr
ξv
[b′ ̸= c′] ·W1

(
µτ,r←b,v←b′

v , µτ,r←c,v←c′

v

)
︸ ︷︷ ︸

(B)

]
.

For (A), we know that b′ = c′, and so the new pinnings v ← b′, v ← c′ agree and can be absorbed
into τ , yielding a new boundary condition and decreasing the number of unpinned vertices. This
is the good case. For (B), we have by the Triangle Inequality that

(B) ≤ W1

(
µτ,r←b,v←b′

v , µτ,r←b,v←c′

v

)
+ W1

(
µτ,r←b,v←c′

v , µτ,r←c,v←c′

v

)
+ 1.

In the first term, we have removed the discrepancy at r, and so we can absorb the pinning r ← b
into τ . In the second term, we have removed the discrepancy at v, and so we can absorb the
pinning v ← c′ into τ , similar to what we did for (A). All in all, we have the reduced the number
of unpinned vertices by 1 for each of the instances appearing in the right-hand side. Finally, using
the fact that ξv is a TV-optimal coupling, we have Prξv [b

′ ̸= c′] =
∥∥µτ,r←b

v − µτ,r←c
v

∥∥
TV

. Putting
all of this together, we obtain

W1

(
µτ,r←b, µτ,r←c

)
≤ Ev∈S(r,R)\Λ

[
max
c′

W1

(
µτ,r←b,v←c′

v , µτ,r←c,v←c′

v

)
+
∥∥µτ,r←b

v − µτ,r←c
v

∥∥
TV
·
(
1 + max

b′,c′
W1

(
µτ,r←b,v←b′

v , µτ,r←b,v←c′

v

))]
.

(5)

Again, the first term is good for us. To control the second term, we will use our assumed influence
bound Eq. (4) to control the expected number of new discrepancy vertices v appearing in S(r,R)
from our coupling.

For two nonnegative integers k, ℓ ∈ N satisfying ℓ ≤ k, define the “worst discrepancy”

WD(k, ℓ)
def
= maxW1

(
µτ,r←b, µτ,r←c

)
,

where the maximum is taken over all instances (G, r, τ : Λ → [q], b, c) such that the number of
unpinned vertices |V \ Λ \ {r}| is exactly k, and the number of unpinned vertices in the sphere
|S(r,R) \ Λ| is exactly ℓ. We have that

WD(k, ℓ) ≤WD(k − 1, ℓ− 1) + max
ℓ′≤∆R

{1 +WD(k, ℓ′)} · Ev∈S(r,R)\Λ
[∥∥µτ,r←b

v − µτ,r←c
v

∥∥
TV

]
(Eq. (5))

≤WD(k − 1, ℓ− 1) +
ϵ

ℓ
· max
ℓ′≤∆R

{1 +WD(k, ℓ′)} , (Eq. (4))

with the base case WD(k, 0) = ∆R for all k ∈ N. To finish the proof, we can solve this recursion
to obtain that

WD(k, ℓ) ≤ (1 + 2ϵH(ℓ)) ·∆R, (6)

where H(ℓ)
def
=

∑ℓ
j=1

1
j ≤ 1+log ℓ denotes the ℓth harmonic number. The calculations for verifying

Eq. (6) are available in [Che+23]. Since the largest ℓ can be is ∆R and we assumed ϵ ≲ 1
R log∆ , we

are done.
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A Unfinished Proofs
Proof of Lemma 2.3. To ease notation, let ν = µτ

S(r,R)\Λ. We have

∥∥νr←b − νr←c
∥∥
TV

=
1

2

∑
σ

νr←c(σ) ·
∣∣∣∣νr←b(σ)

νr←c(σ)
− 1

∣∣∣∣
≤ 1

2
max
σ

∣∣∣∣ν(σ | r ← b)

ν(σ | r ← c)
− 1

∣∣∣∣
=

1

2
max
σ

∣∣∣∣ν(r ← b | σ)
ν(r ← b)

· ν(r ← c)

ν(r ← c | σ)
− 1

∣∣∣∣ (Bayes’ Rule)

=
1

2
max
σ

ν(r ← b | σ)
ν(r ← b)

·
∣∣∣∣ ν(r ← c)

ν(r ← c | σ)
− ν(r ← b)

ν(r ← b | σ)

∣∣∣∣
≲ max

σ
max

c

∣∣∣∣ ν(r ← c)

ν(r ← c | σ)
− 1

∣∣∣∣ (Marginal Bounds and Triangle Inequality)

≲ max
σ,σ′

max
c

∣∣∣∣ ν(r ← c | σ)
ν(r ← c | σ′)

− 1

∣∣∣∣ (Triangle Inequality)

≲ CSSM(1− δ)R. (Strong Spatial Mixing Eq. (1))

Proof of Lemma 2.4. Let ξ be a TV-optimal coupling between µτ,r←b
S(r,g/2) and µτ,r←c

S(r,g/2); note that
the total variation distance between these two distributions is small by Lemma 2.3. Write (σ, σ′)
for a sample from ξ. Then for every v ∈ S(r,R) \ Λ,∥∥µτ,r←b

v − µτ,r←c
v

∥∥
TV
≤ E(σ,σ′)∼ξ

[∥∥∥µτ,σ,r←b
v − µτ,σ′,r←c

v

∥∥∥
TV

]
(Triangle Inequality)

≤ Pr
ξ
[σ ̸= σ′] + Pr

ξ
[σ = σ′] · Eσ

[∥∥µτ,σ,r←b
v − µτ,σ,r←c

v

∥∥
TV

]
,
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where Eσ is an expectation w.r.t. ξ conditioned on σ = σ′. Since ξ is TV-optimal, the first term is∥∥∥µτ,r←b
S(r,g/2) − µτ,r←c

S(r,g/2)

∥∥∥
TV

, which is upper bounded by ≲ CSSM(1−δ)g/2 using Lemma 2.3. Summing
over all v ∈ S(r,R) \ Λ and invoking linearity of expectation yields an upper bound of

CSSM(1− δ)g/2∆R + Eσ

 ∑
v∈S(r,R)\Λ

∥∥µτ,σ,r←b
v − µτ,σ,r←c

v

∥∥
TV


≤ CSSM(1− δ)g/2∆R + CTID(1− δ)R.

Here, in the final step, we used the fact that pinning all vertices in S(r, g/2) using both τ and σ
yields a tree (with boundary conditions prescribed by τ, σ) of depth ≤ g/2. Hence, we may apply
total influence decay on trees to deduce an upper bound of CTID(1− δ)R for the second term. This
concludes the proof.
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