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In this lecture, we build an FPRAS for counting bases of a matroid. We study spectral inde-
pendence for the uniform distribution of matroid bases, and establish nearly-linear mixing time
bounds for a natural Markov chain. We also connect this theory to log-concavity of the bases
generating polynomial.

1 Matroids
We will use just one of the many cryptomorphic definitions of a matroid. For a more comprehensive
treatment of matroids, see [Oxl11].

Definition 1 (Matroid; Independent Set Definition). A matroid M is a pair (U ,X ), where U is
a finite ground set, and X ⊆ 2U is a family of subsets of U satisfying the following properties:

• Downwards Closure: If T ∈ X and S ⊆ T , then S ∈ X as well.1

• Exchange Property: If S, T ∈ X and |T | > |S|, then there exists u ∈ T \ S such that
S ∪ {u} ∈ X .

An element of X is called an independent set, and a maximal independent set is called a basis.
It is well-known that all bases have the same cardinality.2 This common cardinality is called the
rank of the matroid.

Matroids were initially introduced in the 1930s [Whi35] as a combinatorial abstraction of the
idea of linear independence in linear algebra (hence, the name “independent sets”). They have
been intensely studied for decades in combinatorial optimization, polyhedral and topological com-
binatorics, discrete mathematics, mathematical economics, mathematical logic, and more [Oxl11].
There is an entire theory of discrete convexity built around them [Mur03]. Here are some of the
prototypical examples.

Example 1 (Graphic Matroids). Let G = (V,E) be a graph. The graphic matroid M = (U ,X )
associated to G is given by U = E and X = {Acyclic F ⊆ E}. If G is connected, then the bases of
M are precisely the spanning trees in G, and the rank is |V | − 1.

Example 2 (Linear Matroids). Let {v1, . . . , vm} ⊆ V be a collection of vectors in some abstract
vector space V (e.g. Rn). The linear matroid M = (U ,X ) associated to {v1, . . . , vm} is given by
U = [m] and X = {S ⊆ [m] : {vi : i ∈ S} is linearly independent}. In other words, the independent
sets of M are precisely the linearly independent subsets of {v1, . . . , vm}. In this case, the rank of
M is precisely the dimension of the linear space of the vectors {v1, . . . , vm}.

Matroids enjoy a number of useful closure properties, which can be directly checked from the
definition.

Fact 1.1 (Closure Properties). Let M = (U ,X ) be a rank-n matroid. Then the following are all
matroids as well.

• Contraction: For any independent set S ∈ X , define the contraction M/S as the matroid
with ground set U \ S and independent sets {T \ S : S ⊆ T ∈ X}.

1In the language of algebraic topology, X is an abstract simplicial complex.
2In the language of algebraic topology, the simplicial complex X is pure
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• Restriction: For any S ⊆ U , define the restriction M | S as the matroid with ground set S
and independent sets {T ∈ X : T ⊆ S}.

• Truncation: For any 0 ≤ k ≤ n, define the truncation M≤k as the matroid with ground
set U and independent sets {T ∈ X : |T | ≤ k}.

Our goal is to sample a uniformly random basis in an arbitrary, or equivalently, count the
number of bases. By Fact 1.1, such an algorithm would also enable us to count and sample
independent sets of size-k for any k. It can also be converted into an algorithm for counting
and sampling all independent sets. For applications of solving these problems (e.g. to reliability
theory), see [Ana+19] and reference therein.

To sample a uniformly random basis, we will simulate a simple Markov chain called the basis
exchange walk. It is the natural analog of Glauber dynamics for this problem. If we are currently
at a basis B, then we randomly transition to the next basis B′ as follows:

1. Select a uniformly random element e ∈ B and remove e from B.

2. Out of all elements f ∈ U such that B − e+ f is again a basis, choose one such f uniformly
at random and transition to B′ = B − e+ f . Note that we can pick f = e.

Let PEx denote the transition matrix of this Markov chain.

Fact 1.2 (Ergodicity of PEx). PEx is ergodic, and is reversible w.r.t. the uniform distribution over
bases of M.

Reversibility can be directly checked. Irreducibility follows from the exchange property, since
between any pairs of bases B,B′, one can inductively find a sequence of exchanges to transform B
into B′. Aperiodicity follows from the fact that we can choose f = e. In this lecture, we establish
fast mixing of PEx.

Theorem 1.3. For every matroid M of rank-n, the modified log-Sobolev constant of PEx satisfies
ϱ(PEx) ≥ 1/n. In particular, Tmix(ϵ;PEx) ≤ O(n log n+ n log logm) where m = |U|.

Remark 1. This bound is sharp by considering a partition matroid on 2n elements: We have n
disjoint sets B1, . . . , Bn each of size-2, and a subset of U =

⊔n
i=1 Bi is independent if and only if

it has at most element from each of B1, . . . , Bn. In this case, the distribution µ can be identified
with the uniform measure over {0, 1}n, and PEx is exactly Glauber dynamics.

A spectral gap of 1/n along with polynomial-time mixing was first established in [Ana+19]
building on prior works on log-concave polynomials [AOV21] and the recently emerging theory
of high-dimensional expanders, in particular [KO18]. Building on this, the modified log-Sobolev
bound stated above was subsequently obtained by [CGM21] using local-to-global entropy contrac-
tion. More recently, it was shown that the mixing time is O(n log n), independent of m [Ana+21].

2 Spectral and Entropic Independence in the Homogeneous
Setting

Since are restricting attention to distributions over the slice
(
[m]
n

)
, let us set up some notation

specific to this setting. For S ⊆ [m], we write µS for the conditional measure over {T ∈ supp(µ) :

T ⊇ S}, given by µS(T ) = µ(T )∑
T ′⊇S µ(T ′) ; note this definition only makes sense if there exists at least

one T ∈ supp(µ) such that T ⊇ S. For every 0 ≤ k ≤ n, define Dn↘k as the linear operator which
acts on distributions as follows. For any distribution µ on

(
[m]
n

)
, we obtain a new distribution

µk
def
= µDn↘k on

(
[m]
k

)
which is the law of the output of the following process:

1. First sample T ∼ µ, a set in
(
[m]
n

)
.

2. Output a uniformly random size-k subset S ⊆ T .

This “down” operator is agnostic to µ, and the distribution µ0, . . . , µn are (mixtures of) various
marginal distributions of µ itself. We saw them previously when we discussed local-to-global
entropy contraction.
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Let us now define an “up” operator Uk↗n
µ which is in some sense “dual” to Dn↘k, and does

depend on the reference measure µ. For a distribution νk on
(
[m]
k

)
, we obtain a new distribution

ν = νkUk↗n
µ on

(
[m]
n

)
as the law of the output of the following process:

1. First sample S ∼ νk, a set in
(
[m]
k

)
.

2. Output a random T ∈
(
[m]
n

)
drawn according to the conditional measure µS .

The composition of these two operators yield Markov chains on various “levels”
(
[m]
k

)
. For instance,

the down-up walk Dn↘n−1Un−1↗n
µ is a Markov chain on

(
[m]
n

)
, which is reversible to µ, given by

the following two-step process: Starting from S ∈
(
[m]
n

)
, we

1. remove a uniformly random element i ∈ S from S, and

2. add a random element j ∈ [m] such that S − i + j ∈ supp(µ) with probability proportional
to µ(S − i+ j).

When µ is the uniform measure over bases of a matroid, this down-up Markov chain Pµ
def
=

Dn↘n−1Un−1↗n
µ is exactly the basis exchange walk we described earlier.

Let us now relate the mixing properties of this Markov chain Pµ to the correlations within µ.
We modify the notions of spectral independence and entropic independence slightly.

Definition 2 (Spectral Independence). Let µ be a probability measure over the slice
(
[m]
n

)
. We

define the influence matrix Iµ ∈ Rm×m by

Iµ(i → j)
def
= Pr

S∼µ
[j ∈ S | i ∈ S]− Pr

S∼µ
[j ∈ S], ∀i, j ∈ [m].

For η ≥ 0, we say µ is η-spectrally independent if λmax (Iµ) ≤ 1 + η.

For further discussion of the relationship between this version of spectral independence and the
one previously defined, see Appendix A.

Fact 2.1. We have the identity Iµ = D−1
µ Cov(µ), where Dµ = diag (PrS∼µ[i ∈ S])i∈[n] and Cov(µ)

is the covariance matrix of µ after identifying each S ∈ supp(µ) with its {0, 1}-indicator vector
1S ∈ Rm. In particular, µ is η-spectrally independent in the sense of Definition 2 if and only if
Cov(µ) ⪯ (1 + η) ·Dµ.

Definition 3 (Entropic Independence). Let µ be a probability measure over the slice
(
[m]
n

)
. We

say µ is η-entropically independent if

D
(
νDn↘1 ∥µDn↘1

)
≤ 1 + η

n
· D (ν ∥µ) , ∀ distributions ν on

(
[m]

n

)
.

We have the following analogs of the local-to-global theorems we saw previously, with essentially
the same proofs.

Theorem 2.2 (Local-to-Global). Let µ be a probability measure over the slice
(
[m]
n

)
.

• Suppose there exists η ≥ 0 such that µ and all of its conditional measures are all η-spectrally
independent. Then γ (Pµ) ≥ Ω

(
n−(1+η)

)
. [AL20; ALO21]

• Suppose there exists η ≥ 0 such that µ and all of its conditional measures are all η-entropically
independent. Then ϱ (Pµ) ≥ Ω

(
n−(1+η)

)
. [Ana+22]

We can also connect spectral independence to entropic independence just as we did previously.

Theorem 2.3 ([Ana+22]). Let µ be a probability measure over the slice
(
[m]
n

)
. For λ ∈ Rm

≥0,

define µλ to be the distribution on
(
[m]
n

)
given by µλ(S) ∝ µ(S)λS where recall λS def

=
∏

i∈S λi.
The following are equivalent.

• For every λ ∈ Rm
≥0, µλ is η-spectrally independent.

• For every λ ∈ Rm
≥0, µλ is η-entropically independent.
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3 The Mixture Method for Spectral Independence
Previously, we showed that spectral independence implies fast mixing of local Markov chains. The
high-level idea there was to decompose the probability measure µ, e.g. based on conditioning
the coordinates/elements. Here, we will use the same type of strategy to reason about spectral
independence itself.

Theme 3.1. To establish spectral independence for µ, find a decomposition of µ into a mixture ξ
of component measures {να : α ∈ I} (for some index set I) such that

• the mixture measure ξ on I itself satisfies some kind of mixing condition (e.g. a Poincaré
Inequality), and

• each component measure να has well-behaved correlations (e.g. is spectrally independent).

One instantiation of this we have already seen was when we proved the Glauber dynamics
having spectral gap Ω(1/n) implies O(1)-spectral independence for µ. The mixture measure was µ
itself, and the component measures were Dirac masses. Another example is in the third problem
set, where in the application to Ising models, the mixture measure ξ is log-concave (in Rd) and
the component measures are product measures on {±1}n. In this lecture, we again decompose
µ into its pinnings, and relate the spectral independence of the conditionals of µ to the spectral
independence of µ itself.

The main result in this section is the following.

Theorem 3.2 ([Ana+19]). Let M = (U ,X ) be a matroid of rank-n, and let µ be the uniform
distribution over its bases. Then for every λ ∈ R|U|

≥0, µλ is 0-spectrally independent (and hence,
0-entropically independent).

Combined with Theorem 2.2, this immediately implies Theorem 1.3. By going through the
proof and tightening all parts of the analysis, we can also get exactly 1/n as the lower bound
instead of Ω(1/n).

3.1 Trickling Down and 0-Spectral Independence for Matroids
The following seminal result of Oppenheim was first proved in the setting of high-dimensional
expanders, and originally stated the language of simplicial complexes. We state and prove a very
special case for convenience.

Theorem 3.3 (Oppenheim’s Trickle-Down Theorem (Special Case); [Opp18]). Let µ be a proba-
bility measure over the slice

(
[m]
n

)
. Assume the following conditions:

• Weak Spectral Independence: The distribution µ satisfies λmax (Iµ) < n− 1.

• Spectral Independence for Conditionals: For every i ∈ [m], the conditional measure µi

is 0-spectrally independent.

Then µ itself is 0-spectrally independent.

Remark 2. “Weak spectral independence” indeed is very weak, and we almost always get it “for
free”. One cannot see this fact by studying ∥Iµ∥ℓ∞→ℓ∞

. However, it can be reduced to mere
connectivity of a certain “local random walk” Qµ encoding the correlations within µ, which have
seen before:

Qµ(i → j)
def
=

1

n− 1
Pr
S∼µ

[j ∈ S | i ∈ S], ∀i ̸= j.

Qµ is a Markov chain on [m] which is reversible w.r.t. µ1. One can show that λ2(Qµ) =
λmax(Iµ)

n−1 ,
and so “weak spectral independence” is equivalent to connectivity of Qµ.
Remark 3. Oppenheim’s result generalizes to when the conditionals are η-spectrally independent
for positive η. The final conclusion is then (n−1)η

(n−2)−η spectral independence for µ itself. Notably,
there is a degradation in the spectral independence parameter, which becomes rather severe if this
Trickle-Down Theorem is applied too many times. [ALO22] ameliorated this degradation by using
more complicated matrix upper bounds, extending the applicability of the trickle-down method to
e.g. edge-colorings; see also [AO23; WZZ23].
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Proof of Theorem 3.3. Similar to previous lectures, let us write

m(µ)
def
= ES∼µ [1S ] =

[
Pr
S∼µ

[i ∈ S]

]
i∈[m]

∈ Rm

for convenience. Then µ1 = µDn↘1 = 1
nm(µ) and µ may be decomposed as a mixture Ei∼µ1

[
µi
]
.

By the Law of Total Covariance,

Cov(µ) = Ei∼µ1

[
Cov

(
µi
)]

+Covi∼µ1

(
m

(
µi
))

.

Here, we are still viewing µi as a probability measure over
(
[m]
n

)
, although all sets in supp

(
µi
)

are
forced to contain the element i. Hence, m

(
µi
)

is still a vector in Rm, and has entry 1 in coordinate
i. By our spectral independence assumption for the conditional measures, we have that the first
term above is upper bounded as

Ei∼µ1

[
Cov

(
µi
)]

⪯ Ei∼µ1

[
diag

(
m

(
µi
))

− 1i1
⊤
i

]
=

n− 1

n
diag (m(µ)) .

Here, the correction 1i1
⊤
i again comes from including the ith coordinate in m

(
µi
)
, which has

value 1. For the second term, we use the fact that for each j ∈ [m], the jth entry of m
(
µi
)

is
precisely the conditional probability Pr[j | i] appearing in spectral independence.

Claim 3.4. We have the identity

Covi∼µ1

(
m

(
µi
))

=
1

n
Cov (µ) diag (m(µ))

−1
Cov(µ).

We prove Claim 3.4 in a moment. We first use it to conclude the proof of the theorem. Claim 3.4
and 0-spectral independence for the conditionals gives us the inequality

Cov(µ) ⪯ n− 1

n
diag (m(µ)) +

1

n
Cov (µ) · diag (m(µ))

−1 · Cov(µ).

Letting Aµ = diag (m(µ))
−1/2

Cov(µ) diag (m(µ))
−1/2, the above inequality is equivalent to

Aµ ·
(
Id− 1

n
Aµ

)
⪯ n− 1

n
Id.

Our goal is to deduce Aµ ⪯ Id, which is exactly 0-spectral independence for µ itself. Let λ

be any eigenvalue of Aµ. We wish to show that λ ≤ 1, and the above inequality asserts that
λ
(
1− λ

n

)
≤ 1 − 1

n , or equivalently, (1− λ )
(
1+λ

n − 1
)
≤ 0. The quadratic on the left-hand side

has negative leading coefficient, and roots at 1 and n− 1. Hence, to ensure λ ≤ 1, we just need to
rule out the possibility that λ ≥ n − 1. This is guaranteed by our “weak spectral independence”
assumption.

Proof of Claim 3.4. The left-hand side is given by

1

n

∑
i∈[m]

mi(µ) ·m
(
µi
)⊗2 −

 1

n

∑
i∈[m]

m
(
µi
)⊗2

=
1

n

∑
i∈[m]

mi(µ)
−1 ·

(
mi(µ) ·m

(
µi
))⊗2 −m(µ)⊗2

=
1

n
ES∼µ

[
1S1

⊤
S

]
· diag (m(µ))

−1 · ES∼µ

[
1S1

⊤
S

]
−m(µ)⊗2,

where in the final step, we used the fact that the ith row and column of ES∼µ

[
1S1

⊤
S

]
is precisely

the vector mi(µ) · m
(
µi
)
. Expanding the right-hand side yields the same expression after using

the fact that 1⊤m(µ) =
∑

i∈[m] PrS∼µ[i ∈ S] = n.

Proof of Theorem 3.2. We prove the claim for the special case λ = 1; the case of general λ ∈ RU
≥0

is similar. By Theorem 3.3 and induction, it suffices to prove that for every independent set S ∈ X
of size-(n−2), the conditional distribution µS is 0-spectrally independent. Note that µS is just the
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uniform distribution over the bases of the contraction MS , which has rank-2 since S is independent
and has cardinality n− 2. Hence, we just need to establish 0-spectral independence for all rank-2
matroids.

Let M be a rank-2 matroid, and let µ denote the uniform distribution over its bases. Our goal
is to establish 0-spectral independence. By Fact 2.1, this is equivalent to establishing that

ES∼µ

[
1S1

⊤
S

]
− diag (m(µ)) ⪯ m(µ)m(µ)⊤. (1)

We use the following purely linear algebraic fact, whose proof is provided in Appendix B.

Lemma 3.5. Let A ∈ Rn×n
≥0 be a nonnegative symmetric matrix which is not all zero. Then the

following are equivalent.

1. For every v ∈ Rn
>0 and x ∈ Rn,

(
x⊤Ax

)
·
(
v⊤Av

)
≤

(
x⊤Av

)2.
2. There exists v ∈ Rn

>0 such that for every x ∈ Rn,
(
x⊤Ax

)
·
(
v⊤Av

)
≤

(
x⊤Av

)2.
3. A has exactly one positive eigenvalue.

We prove Lemma 3.5 in a moment. We first use it to establish Eq. (1). We instantiate
Lemma 3.5 with

A = ES∼µ

[
1S1

⊤
S

]
− diag (m(µ)) , (2)

the left-hand side in Eq. (1), and v = 1. Note that Av = m(µ) since all sets S ∈ supp(µ) have
size-2. Similarly, 1⊤A1 = 2. We will establish that 2x⊤Ax ≤

(
x⊤A1

)2 for all x ∈ Rn, which is
stronger than Eq. (1). By Lemma 3.5, to prove the former, it suffices to certify that A has at most
one positive eigenvalue. This is where we will use the fact that we are looking at a matroid.

Since µ is uniform over the bases of a rank-2 matroid, up to scaling by some positive constant
(namely #{Bases}−1), A is just the {0, 1}-adjacency matrix of the following graph GM on vertex
set U : Two distinct elements i, j ∈ U are connected by an edge if and only if {i, j} is a basis in M.
In other words, GM is the complement of the dependency graph of G.3

Claim 3.6. The graph GM is a complete multipartite graph, i.e. there exists a partition A1 ⊔
· · · ⊔Ak of U such that i ∼ j if and only if i, j belong in different parts of the partition.

Proof. We claim that the relation i ̸∼ j in GM is an equivalence relation on U . Indeed if i, j, k ∈ U
are distinct elements and i ∼ k, then applying the exchange axiom to S = {j} and T = {i, k}
implies that i ∼ j or j ∼ k. The contrapositive says that i ̸∼ j and j ̸∼ k implies i ̸∼ k. Now
that we know ̸∼ is an equivalence relation, we may take A1, . . . , Ak to be the equivalence classes,
concluding the proof.

We now use Claim 3.6 to show that A has at most one positive eigenvalue. Observe that

A ∝ Adj(GM) = 11⊤ −
k∑

i=1

1Ai1
⊤
Ai
.

Since A is equal to a rank-1 matrix minus a positive semidefinite matrix, it has exactly one positive
eigenvalue as desired.

4 Connections with Log-Concave Polynomials
While none of the above results or proofs invoked polynomials, we can capture them again using
the generating polynomial for the distribution µ, which recall is given by gµ(z) =

∑
S⊆[m] µ(S)z

S .
If µ is supported on the slice

(
[m]
n

)
, then gµ is a homogeneous multiaffine polynomial of degree-m.

We have the following equivalence between log-concavity of gµ and 0-spectral independence.

Lemma 4.1. Let µ be a probability measure over the slice
(
[m]
n

)
. For every λ ∈ Rm

≥0, the following
are equivalent:

3In the language of algebraic topology, where we view M as a simplicial complex, GM is the 1-skeleton graph
of M.
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• 0-Spectral Independence: The distribution µλ is 0-spectrally independent.

• Log-Concavity of gµ: The polynomial gµ is log-concave at λ, i.e. ∇2 log gµ(λ) ⪯ 0.

Proof. A direct calculation reveals that

Cov (µλ)− diag (m (µλ)) = diag(λ) · ∇2 log gµ(λ) · diag(λ).

Since λ ∈ Rm
≥0, the former is negative semidefinite (i.e. µ is 0-spectrally independent) if and only

if gµ is log-concave at λ.

A straightforward generalization of the proof also shows that η-spectral independence for µλ is
equivalent to concavity of the function z 7→ log gµ

(
z

1
1+η

)
at z = λ [Ali+21].

The following beautiful theorem was first proved in [AOV21], building on seminal work of
Adiprasito–Huh–Katz [AHK18]. Using essentially Lemma 4.1 and Theorem 3.2, an elementary
proof was given in [Ana+19].

Theorem 4.2 ([AOV21]). The generating polynomial for the uniform measure over bases of any
matroid is log-concave on all of RU

≥0.

The theory of log-concave polynomials was first studied by Gurvits [Gur06] towards proving
combinatorial log-concavity inequalities between sequences of numbers. In a momumental break-
through, Adiprasito–Huh–Katz built a “combinatorial Hodge theory” for proving such inequalities,
resolving many decades-old conjectures on log-concavity of the coefficients of the chromatic poly-
nomial, of the number of independent sets of a fixed size in any matroid, and more [AHK18].
Many of these conjectures now have elementary proofs using the theory of log-concave polynomials
[Ana+18; BH20; BL23]. Log-concave polynomials are often called Lorentzian polynomials [BH20],
particularly in the algebraic combinatorics community where there are many applications.

5 Open Problems
We conclude this lecture with some open problems.

5.1 Deterministic Algorithms
The basis exchange walk only assumes that we have an independence oracle for matroid. This is
some blackbox function which outputs whether or not a subset S ⊆ U is independent or not; we
only get to query it with subsets of U , without knowing how this function works. It turns out
that in this restrictive model, there can be no FPTAS for counting bases of a matroid [ABF94]. In
this oracle setting, there do exist deterministic algorithms which can approximate the number of
bases of an arbitrary matroid up to a multiplicative factor of 2O(r) [AOV21]. Note that the naïve
approximation factor is

(
n
r

)
≈ nO(r). However, in many applications, we have much more than just

access to an independence oracle. Hence, the following question is very natural.

Question 1. Does there exist an FPTAS for counting bases of an “explicitly given” matroid? For
instance, given a collection of vectors v1, . . . , vn ∈ Rd, does there exist an FPTAS for counting the
bases of the linear matroid induced by {v1, . . . , vn}?

An example of a positive result in this direction is the classical Kirchhoff Matrix Tree Theorem
[Kir47]. It says that we can express the number of spanning trees in a graph as the determinant of
an n× n matrix, which can then be computed exactly and deterministically in polynomial-time.

5.2 Matroid Intersection
Now that we can approximately count bases of a single matroid, a natural extension is to count
the common bases of two matroids. This simultaneously generalizes the single matroid case, as
well as many other important combinatorial problems (e.g. perfect matchings in bipartite graphs,
arborescences, rainbow spanning trees, etc.). This problem remains wide open.

Question 2. Does there exist an FPRAS for counting the common bases of two matroids M,N
on the same ground set?
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[AOV21] gave a deterministic 2O(r)-approximation for this problem as well. Note that finding
a common basis of three matroids is already an NP-hard problem, since it can encode the problem
of finding Hamiltonian path.
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A A Remark on Homogeneity
We used a different notation Iµ for the influence matrix in the homogeneous setting to distinguish
it from the previous one Ψµ, where Ψµ(i → j) = PrS∼µ[j ∈ S | i ∈ S]−PrS∼µ[j ∈ S | i /∈ S]. Both
notion of influence make sense, but requiring λmax (Iµ) ≤ 1 + η is less stringent than requiring
λmax (Ψµ) ≤ 1 + η.

Homogeneity is actually not a restrictive assumption, since any distribution (e.g. over {±1}n
or [q]n) can always be homogenized. For instance, let µ be a distribution over {±1}n (e.g. all
independent sets in some graph), which a priori is not homogeneous. We define a homogenized
version µhom over the slice

(
[n]×{±1}

n

)
, which is supported on sets of the form Sσ

def
= {(i, σ(i)) : i ∈

[n]} ∈
(
[n]×{±1}

n

)
and given by µhom(Sσ) = µ(σ).

This homogenized distribution µhom possesses all of the same essential features as that of µ.
Glauber dynamics for µ is exactly the down-up walk for the homogenized distribution µhom. Fur-
thermore, one can show that Ψµ and Iµhom have the same eigenvalues (up to multiplicity of the
zero eigenvalue). In particular, η-spectral independence for µ in the sense we previously discussed
is the same as η-spectral independence for µhom in the sense of Definition 2.
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B Unfinished Proofs
Proof of Lemma 3.5. Item 1 clearly implies Item 2. Suppose Item 2 holds. Then the matrix

A− (Av)(Av)⊤

v⊤Av

is negative semidefinite. Note that 1⊤A1 > 0 and so A has at least one positive eigenvalue. If A
has more than one positive eigenvalue, then there exist a subspace W ⊆ Rn of dimension ≥ 2 on
which A is a positive definite quadratic form. But this implies A− (Av)(Av)⊤

v⊤Av
is positive definite on

W ∩span{Av}⊥, which has dimension ≥ 1, contradicting A− (Av)(Av)⊤

v⊤Av
being negative semidefinite.

Hence, Item 3 must hold.4
Finally, suppose Item 3 holds. Then we can express A as A = B + ww⊤, where B is negative

semidefinite and w ∈ Rn. Now let v ∈ Rn
>0 and x ∈ Rn be arbitrary, and let P ∈ R2×n have v, x

as its rows. Then PAP⊤ = PBP⊤+(Pw)(Pw)⊤ ∈ R2×2 has at most one positive eigenvalue (e.g.
by the same argument as we did above). Furthermore

PAP⊤ =

[
v⊤Av x⊤Av
x⊤Av x⊤Ax

]
.

Since v ∈ Rn
>0, v⊤Av > 0 and so PAP⊤ has at least one positive eigenvalue. It follows that PAP⊤

has exactly one positive eigenvalue and one negative eigenvalue, and so(
v⊤Av

)
·
(
x⊤Ax

)
−

(
x⊤Av

)2
= det

(
PAP⊤) ≤ 0.

Since v ∈ Rn
>0 and x ∈ Rn were arbitrary, we have Item 1.

4A more streamlined approach would have been to just apply the Cauchy Interlacing Theorem.
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