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In this lecture, we return to (multivariate) zero-freeness of the partition function. We show
that it implies spectral independence and hence, fast mixing of Glauber dynamics.

1 The Generating Polynomial and its Zero-Freeness

Let p1 be a probability distribution over 2I"! (which of course can be identified with {£1}"). Define
its generating polynomial as

gu(2) = D u(s)- 25, (1)
SCln]
where we use the shorthand z5 % [l;cg zi- This is a multiaffine polynomial of degree (at most)
n. Its logarithm is essentially the cumulant generating function £,, of i we previously saw, except
with a change of variables to obtain a polynomial. One of the central ideas in the study of the
geometry of polynomials is the following.

Theme 1.1. It is fruitful to relate the analytic/algebraic properties of g, to the probabilistic/combinatorial
properties of u itself.

For instance, a consequence of Barvinok’s algorithm is that whenever g, admits a large zero-free
region, then we have efficient algorithms for estimating g,." In this lecture, we will be interested
in deducing correlation bounds given zero-freeness of g,,. The following beautiful theorem, which
we will not prove, is an example of such a result.

Theorem 1.2 ([BBL09|). Suppose g, is real stable, i.e. that g, # 0 whenever Imz; > 0 for all
i € [n]. Then p is negatively correlated in the sense that

PrjjeS|ieS)|<PrjjesS|i¢s], Vi # j.
S~p S~p

Real stability of the generating polynomial of p is sometimes referred to as the strongly Rayleigh
property. It turns out to be an extremely robust notion of negative correlation, one which has found
many applications; see e.g. [Pem12]| and references therein. We also previously saw that negatively
correlated distributions on (homogeneous) set systems are 1-spectrally independent. The main
result of this lecture is to establish a more direct connection between zero-freeness and spectral
independence, one which does not require zero-freeness w.r.t. an entire half-plane.

Recall the following notion of multivariate zero-freeness we used previously.

Definition 1 (Stability). LetT'y,...,T',, C C be subsets of the complex plane. We say a multivari-
ate polynomial p(z1,...,2n) is 1 X -+ - X Ty -stable if p(z) # 0 whenever z; € T; for alli =1,...,n.
IfT'y=-..=T,, =T for some ' CC, then we simply say p is I'-stable.

Theorem 1.3 ([CLV21]; building on [Ali+21]). Suppose there exists a constant § > 0 such that g,,
is stable w.r.t. the open radius- disk D(1,0) around 1. If in addition the marginals of u are bounded

IThis is not entirely true, since Barvinok’s algorithm also requires that that zero-free region contains a point at
which computing g, is easy. For instance, we do not have FPTAS for estimating arbitrary real stable polynomials.



in the sense that there is a constant 0 < B < 1/2 such that Prg,[i € S],Prg.,li ¢ S| > £ for
all i € [n], then

S 4
) NN < == ) .
j; ‘\IIIL(Z —>J)| — %(1 _%)627 Vi€ [TL]

In particular, p is O(1/9%6%)-spectrally independent.

Remark 1. The point 1 for zero-freeness isn’t special. One could look at stability w.r.t. an open
radius-9 disk around any other point A € RY, in which case we’d get spectral independence for

the tilted distribution px(S) oc u(S) - A5.

Theorem 1.4 ([Ali+21]). Suppose there exists a constant o > 0 such that g, is stable w.r.t. the
sector

So & et 0| < am/2,7>0}. (2)
around the nonnegative real axis with aperture amw. Then

n

D

Jj=1

oo

PrijeS|ieS| - PrljeS|i¢s)| <2, Vieln,
S~ Seop

and s (% — 1) -spectrally independent. Furthermore, the same inequality holds for all exponential
tilts of p, i.e. distributions of the form px(S) oc u(S) - XS for some A € RY,.

Remark 2. In the special case a = 1, S, becomes the open right half-plane {z € C : Rez > 0}.
Polynomials which are stable w.r.t. S are often called Hurwitz stable.

The rough intuition behind these statements is the following: Since the correlations of u are
given by second-order derivatives of log g,, at 1, these correlations are small if log g,,(1) is “smooth”
in some sense. This is only the case if 1 is far away from the zeros of g,. For more results
accommodating more general zero-free regions, see [Ali+21; CLV21].

1.1 Applications

Before we prove Theorems 1.3 and 1.4, let us mention a few applications.

Ezample 1 (Hardcore Model in Tree Uniqueness). We previously mentioned that Peters—Regts
[PR19] established stability of the multivariate independence polynomial Zg(X) of a graph of
maximum degree A in a neighborhood of the interval [0, A\.(A)), where A.(A) is again the unique-
ness threshold w.r.t. the infinite A-regular tree. In this regime, Barvinok’s algorithm furnishes
an FPTAS. Combining this zero-freeness result with Theorem 1.3 yields an alternative proof of
O(1)-spectral independence of the hardcore Gibbs measure in the uniqueness regime, albeit with
worse quantitative bounds.

Ezample 2 (Monomer-Dimer Model). Recall we previously showed that the univariate match-
ing polynomial M (2) = -3¢ 5 matching zIMI real-rooted. This is the Heilmann-Lieb Theorem
[HL72], and more in depth analysis reveals that for every nonnegative vector of edge weights
A € RE, the multivariate (vertex) matching polynomial

WEOEEDY | B |

MCE eeM v unmatched
matching

is Hurwitz stable; see e.g. [BB09]. Combined with Theorem 1.4, this in particular implies that for
any graph G = (V| E), the monomer-dimer Gibbs distribution satisfies the correlation bounds

Z ‘li/lr[v matched | « matched] — l;/lr[v matched | v unmatched]| < 2. (3)
veV

Note that no assumptions on the degree were made. This result was first proved in a paper of Jeff
Kahn [Kah00] using a simple but clever inductive argument.

There are also additional applications of this method to determinantal point processes, even
subgraphs, edge covers, edge spin systems (i.e. spin systems on line graphs), etc. [Ali421; CLV21].



2 A Little Complex Analysis

To formalize the above intuition, we will leverage the following standard fact from complex analysis,
which captures the “rigidity” of smooth complex functions.

Lemma 2.1 (Schwarz—Pick). Let f : D(0,1) — D(0, 1) is a univariate holomorphic function. Then
1O <1=[fO) <1.

In light of the Schwarz—Pick lemma, our strategy will be to construct such a univariate holo-
morphic function f such that f maps D(0, 1) into itself, and |f'(0)| = >°7_, [¥,(i — j)|, perhaps
up to constants depending on 4, 4.

Proof of Theorem 1.3. Fix an arbitrary 7 € [n], and define

def 0., 1log g.(2)
F; = — - .
(2) Prg,li € 5] Prg[i ¢ S]

Note that 0., F;(1) = ¥, (i — j) for all j € [n]. Our goal is to construct appropriate maps ¢ : C —
C and ¢ : C — C" such that the composition f(z) = ¥ (F;(¢1(2),...,¢n(2))) is holomorphic and
satisfies f(ID(0,1)) C (0, 1). If we have such 9, ¢, then by applying the Schwarz—Pick Lemma,

1>f(0)] (Lemma 2.1)
= [V (Fi(¢(0)))] - (VFi((0)), ¢'(0)) (Chain Rule)

= W (F(p O] D2 Wali = ) - 200,

A natural and simple choice is to take 1, ¢ to be affine functions.

e To ensure that f is holomorphic, we use ¢ to map (0, 1) into the region of stability of g,
which we assumed is D(1,4). For convenience, let us allow an epsilon of room. Let

1)
pi(z) 1+ 55i%

where s; = sign (¥, (¢ — j)). This ensures that ¢;(ID(0,1)) € ID(1,0/2) for all j € [n],
- . . 12 6 - . .
PR AEFIRCIOEES I A
j=1 j=1

In particular, this choice for ¢ alone already implies
DL [ — (®)
2 5 (E)]

e Now, we design ¢. In order to apply the Schwarz—Pick Lemma, we need % to map the image
of D(0,1) under F; o ¢ back into D(0,1). This is the tricky part, since we must understand
the image of F;. This is also where it is convenient to have an epsilon of room from the
definition of ¢, since we only need to consider F;(ID(1,4d/2)) instead of F;(ID(1,4)).

Claim 2.2. The image of D(1,8/2) under F; is contained in D (0, M)

Once we have this, an obvious choice for 1) is to scale everything down by a factor of
B(1—B)5
2

B(1—B)S
==,

In particular, we let ¢(z) = z. Plugging this into Eq. (4) immediately implies the
theorem. All that remains is to justify Claim 2.2.

O

Proof of Claim 2.2. Since we assumed the marginal bound Prg.,[i € S| > 2, the claim is equiv-
alent to showing that the image of ID(1,4/2) under z — 0; log g, (%) is contained in I(0,2/¢).



We go by contradiction, making crucial use linearity of g, in each of its variables. Fix
Z1,...,2n € D(1,0/2), and write y = 9;1og g, (z). We wish to show that |y| < 2/4. Since

9igu(2)
y = 0;log gu(2z) = ——==,
H( ) g,u(z)
rearranging yields
1
9gu(z) — v digu(2z) = 0. ()

Suppose for contradiction that |y| > %. Then '—% < g. We use this and Eq. (5) to construct a

new vector 2z’ € D(1,9)" such that g,(z") = 0, contradicting D(1, §)-stability of g,,.
Define 2’ by 2} = z; for all j # 4, and Zh =z — % Since |z; — 1| < g and f% < %, we have

z' € D(1,6)". Furthermore, since g, is linear in each of its variables,

0 () = (9u(2) — 2 - Bugu(2)) + ( - ;) igu(2)

Monomials without

— gul(2) - § - 0ig,(2)

Monomials with

=0 (By Eq. (5))

ot

3 Better Maps for Sectors

If we impose more structure on our zero-free regions, then we can construct much better i, ¢
and prove better bounds. We just need to understand where how the map y — —% changes our
zero-free region, and how to map between these regions and the unit disk (0, 1).

Proof of Theorem 1.4. Since p and py have the same generating polynomials up to rescaling the
variables by nonnegative coefficients, sector stability also holds for g,,. Hence, without loss of
generality, we just prove spectral independence for y itself.

Fix an arbitrary i € [n], and define’

Fi(z)_log< 99u(2) )

(1= 20i)gu(2)

A direct calculation reveals that 0., Fi(1) = Prs.,lj € S |i € S] —Prsulj € S| i ¢ S] for all
j € [n]. We construct appropriate maps ¢ : C — C and ¢ : C — C" such that the composition
f(z) = ¥(Fi(p1(2),...,pn(z))) satisfies the assumptions of the Schwarz—Pick Lemma, since then
we’d have

1= [£(0)]* > [ £(0)] = [/ (Fi((0)))] - Z%(i — 7)) - #5(0). (6)
j#i

e Since g, is stable w.r.t. the sector S,, we use M6bius transformations and exponential maps
instead of affine functions. More specifically, take

00 % glsye) = (122)

1—s52

1+ @

Cl—z

where g(x) and s; = sign(¥, (i — 7)), Vi € [n].

The point is that ¢;(ID(0,1)) € S, since the inner Mébius function g maps D(0, 1) to the
right half-plane S, and then taking the ath power scales down the angle. A quick calculation

2If the numerator inside the logarithm were multiplied by z;, and if z € RZ ), then we’d exactly have the marginal
ratio of ¢ under the tilted measure p. -



1+s;2
1-s;z

a—1
reveals that ¢’ (2) = 2s;ja - ( ) . (1751%)2 and so plugging this into Eq. (6) and using

©(0) =1 gives

S I € 5 T (®)
— 200 |P'(Fi(1))]

JFi

e Now let us argue about the image of F;, which will then tell us how to construct .

Claim 3.1. For every z1,...,zn € Sa, we have that

digu(z)
(1 = 20i)gu(2)

In particular, the image of S, under F; is contained within the strip

{ze(C:|Imz|<(1—%)7r}. (9)

¢ —S..

Before we prove this claim, let us finish the proof by constructing . Let

P(z)=g7" <exp (1 i/j/z Z>> :

where g71(2) = ~-7 Is the inverse of the Mébius transformation g we used in the definition
of ¢ above. The point is that the inner exponential maps the strip in Claim 3.1 to the right
half-plane S7, and then g~! maps this right half-plane to (0, 1). Another quick calculation

reveals that

9 1/2
exp (1573 2 1/2 1/2
5 =— .
(1 +exp (1_1512/2 z)) l—a/2 1—-a/2

Combined with Eq. (8) yields

P'(2) =

21—

. ) 2
Sl < -1
J#i

Adding back ¥,,(i — ¢) = 1 to both sides concludes the proof.
O

Proof of Claim 3.1. Since the image of —S, under the exponential map z — exp(z) is the strip in

Eq. (9), the first claim indeed implies the second. Let y = % and suppose for contradic-

tion that y € S_,. Then —% € S., whence

1
0=(1-20)gu(z) — v 0;9u(2) (Rearranging)
1 . .
=g, <y,z_i> . (g, is multiaffine)
This contradicts S,-stability of g,,. O
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