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In this lecture, we return to correlation decay. We show that it implies spectral independence
and hence, fast mixing of Glauber dynamics. Our main case study is again the hardcore model.

1 Optimal Mixing for the Hardcore Model in Uniqueness
Let G = (V,E) be a graph of maximum degree ∆, and let λ ≥ 0 be a parameter. Recall the
associated hardcore Gibbs measure is described by

µG,λ(I) ∝ λ|I|, ∀I ⊆ V independent,

with partition function

ZG(λ)
def
=

∑
I⊆V independent

λ|I|.

We previously saw that when λ < λc(∆), where λc(∆) = (∆−1)∆−1

(∆−2)∆ is the uniqueness threshold
(w.r.t. the infinite ∆-regular tree), the measure µG,λ exhibits correlation decay (more precisely,
strong spatial mixing). Furthermore, in this regime, we have a FPTAS for estimating ZG(λ) based
on Weitz’s algorithm [Wei06],1 and this counting problem becomes NP-hard for λ > λc(∆) [Sly10].
However, Weitz’s FPTAS has running time nO( 1

δ log∆). At the cost of randomization, we show
there are much faster algorithms using Markov chains.

Theorem 1.1 ([CLV21]; building on [ALO21; CLV20]). Suppose λ ≤ (1−δ)λc(∆). Then for every
graph G = (V,E) of maximum degree ∆, the hardcore Gibbs measure µG,λ is O(1/δ)-spectrally
independent.2 In particular, Glauber dynamics for µG,λ mixes in O∆,δ(n log n)-steps.

Remark 1. Note that the spectral independence result does not require the degree ∆ to be bounded
by a universal constant. However, the optimal mixing time does. With the techniques we have seen
so far, we only get mixing time nO(1/δ) if we don’t have the bounded-degree assumption. Later,
we’ll see a sharper technique which will completely remove this dependence on ∆.

Throughout, we’ll write µ instead of µG,λ since G,λ will be clear from context. As is typical in
many proofs of spectral independence, we will bound ∥Ψµ∥ℓ∞→ℓ∞

≤ O(1/δ) instead. In particular,
we aim to show that for all r ∈ V , ∑

v∈V

|Ψµ(r → v)| ≤ O(1/δ).

As a warm-up, let us see how this follows directly from correlation decay when the graph G = (V,E)
is amenable, i.e. the balls in G w.r.t. graph distance grow subexponentially in the radius. For

1[PR19] also showed that Barvinok’s polynomial interpolation algorithm works in this regime.
2Note that one convenient closure property of the hardcore model is that every conditional measure of µG,λ

induced via pinning is another hardcore model on a subgraph of G. Hence, we can simplify the statement to only
address spectral independence for µG,λ itself.
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instance, if G = Zd, then∑
v∈V

|Ψµ(r → v)| =
∞∑
ℓ=0

∑
v:dist(r,v)=ℓ

|Ψµ(r → v)|

≤
∞∑
ℓ=0

(1−O(δ))ℓ ·#{v ∈ V : dist(r, v) = ℓ} (Correlation Decay)

≤
∞∑
ℓ=0

(1−O(δ))ℓ ·O
(
ℓd
)

(Growth of balls in G = Zd)

≤ Od(1/δ). (Assuming the dimension-d is fixed)

This recovers classical coupling-based results connecting temporal mixing of local Markov chains
like Glauber dynamics, and spatial mixing of µ [Dye+04; Wei04]. However, even putting aside the
fact that the bound additionally depends on the degree ∆, this argument definitely breaks down
for e.g. expanders, which constitute most graphs. Note that here, we have not used the full power
of strong spatial mixing, which concerns the influence of a (potentially large) set of vertices; we
have only used the fact that vertex-to-vertex correlations are exponentially small in their distance.
While we do not know how to use strong spatial mixing directly to prove Theorem 1.1 for general
bounded-degree graphs, we can still open up the proof of strong spatial mixing to establish spectral
independence. In particular, we will use contraction of the tree recursion to remove the extra factor
of #{v ∈ V : dist(r, v) = ℓ}.

Proposition 1.2 (Total Influence Decay). Suppose λ ≤ (1−δ)λc(∆). Then there exists an absolute
constant C > 0 such that for every graph G = (V,E) of maximum degree ∆, every r ∈ V , and
every ℓ ∈ N, we have the estimate∑

v:dist(r,v)=ℓ

|Ψµ(r → v)| ≤ C · (1−O(δ))ℓ.

By the arguments we have already seen, Theorem 1.1 is an immediate consequence of Propo-
sition 1.2. The rest of this note is devoted to establishing Proposition 1.2.

2 Total Influence Decay via Contractive Tree Recursions
What does it mean for the influence of r onto v to be small? It means that the marginal distribution
of v is stable w.r.t. pinning r; whether or not you pin r to be in/out, the marginal distribution
of r roughly stays the same. This stability viewpoint suggests a way to certify that the influence
small.

Theme 2.1. We can “witness” that Ψµ(r → v) is small by exhibiting an algorithm for exactly
computing the marginals of v which is “stable” w.r.t. its input. Note that this algorithm need not
be efficient.

Ultimately the existence of such a “stable” algorithm must depend on whether or not λ < λc(∆).
In light of our proof of strong spatial mixing, a natural choice of this algorithm is the tree recursion
for the hardcore model, combined with the self-avoiding walk tree gadget to make it applicable to
general graphs. Stability is then guaranteed by contraction of the recursion.

To formalize all of this, the key is to interpret influences as derivatives of the marginals (although
for technical reasons, we will instead consider the marginal ratios). This is essentially the same as
the classical fact that the second-order derivatives of the log-partition function yield covariances.
To see this, it is again best to switch to the multivariate perspective.

Lemma 2.2. For a vector of vertex-dependent fugacities λ ∈ RV
≥0, define

RG,r(λ)
def
=

λr · ZG−N [r](λ)

ZG−r(λ)
=

PrI∼µG,λ
[r ∈ I]

PrI∼µG,λ
[r /∈ I]

. (1)

Then

Ψµ(r → v;λ) = ∂log λv
logRG,r(λ), (2)

where we have highlighted the dependence of Ψµ(r → v) on λ.

2



Since Eq. (2) involves the ratios RG,r(λ), let us write down the analog of the tree recursion.
This will be our algorithm for computing the marginal ratios.

Lemma 2.3 (Tree Recursion for Ratios).

Fd,λ(R1, . . . , Rd)
def
= λ

d∏
i=1

1

1 +Ri
. (3)

To illustrate Theme 2.1, let us first prove a very special but representative case of Proposi-
tion 1.2.

Proof of Proposition 1.2 for Trees when λ ≤ 1−δ
∆−1 . Suppose G is a tree T of maximum degree ∆,

and let r be an arbitrarily chosen root vertex. Let u1, . . . , ud be the children of r, with corresponding
rooted subtrees Ti = Tui

. Then

KT,r(λ) = Gd,λ (KT1,u1(λ), . . . ,KTd,ud
(λ)) , (4)

where we use the change of variables KT,r(λ) = logRT,r(λ) in keeping with Lemma 2.2, and

Gd,λ(K)
def
= logFd,λ

(
eK1 , . . . , eKd

)
gives the induced tree recursion for these new variables. Since we’re assuming the stronger bound
λ ≤ 1−δ

∆−1 , this composition Gd,λ is a contraction in the following sense.

Claim 2.4. Suppose λ ≤ 1−δ
∆−1 . Then for every 1 ≤ d ≤ ∆ − 1, and every K ∈ Rd such that

Ki ≤ log λ for all i ∈ [d],

∥∇Gd,λ(K)∥1 ≤ 1−O(δ). (5)

This is our stability property; for completeness, we provide a proof of this contraction at the end
of this section. The restriction Ki ≤ log λ is not an issue, because a direct corollary of Lemma 2.3
and monotonicity of Fd,λ is that RG,r(λ) ≤ λr for every unpinned vertex r.

Now fix a vertex v ∈ T , and let ui denote the unique child of r such that v is in the subtree
Ti = Tui

. Then a direct consequence of the Chain Rule and Lemma 2.2 is that

ΨT (r → v) = ∂log λv
KT,r(λ)

=

d∑
j=1

∂Kj
Gd,λ(K) · ∂log λv

KTj ,uj
(λ)

= ∂KiGd,λ(K) ·ΨTi(ui → v).

It follows that

∑
v∈T :dist(r,v)=ℓ

|ΨT (r → v)| =
d∑

j=1

∣∣∂Kj
Gd,λ(K)

∣∣ ∑
v∈Tj :dist(uj ,v)=ℓ−1

∣∣ΨTj
(uj → v)

∣∣
≤ ∥∇Gd,λ(K)∥1 · max

j=1,...,d

 ∑
v∈Tj :dist(uj ,v)=ℓ−1

∣∣ΨTj
(uj → v)

∣∣
(Hölder’s Inequality)

≤ · · · (Induct on subtrees T1, . . . , Td)

≤
(

max
1≤d≤∆−1

sup
K

∥∇Gd,λ(K)∥1

)ℓ

≤ (1−O(δ))ℓ. (Contraction of Gd,λ)

Again, in the final step, we are justified in using contraction of Gd,λ since we only need to consider
unpinned vertices in T .
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Proof of Claim 2.4. We have

Gd,λ(K) = log λ−
d∑

i=1

log
(
1− eKi

)
,

and so

∥∇Gd,λ(K)∥1 =

d∑
i=1

eKi

1 + eKi
.

Since Ki ≤ log λ and λ ≤ 1−δ
∆−1 , the claim follows.

3 The Computation Tree and the Potential Method
Now let us consider the general case. For a general graph, we can still use the tree recursion,
except we need to be careful about the inputs to Fd,λ. This was handled by the computation tree
(or self-avoiding walk tree) we saw previously.

Theorem 3.1 (Computation Tree for Ratios; [Wei06]). Let G = (V,E) be an arbitrary graph, and
let r ∈ V be an arbitrary vertex with neighbors u1, . . . , ud ordered arbitrarily. Then

RG,r = Fd,λ(RG1,u1
, . . . , RGd,ud

),

where for all k = 1, . . . , d, the graph Gk is obtained from G by deleting r and u1, . . . , uk−1. In
particular, there exists a tree T = TSAW(G, r) of maximum degree ∆ rooted at r, whose vertices
correspond to pairs (H,u) where H is a subgraph of G and u ∈ VG, such that RG,r = RT,r.

Remark 2. Using the Chain Rule, one can also deduce from this that for every vertex r ∈ G, if
T = TSAW(G, r) denotes the corresponding computation tree/self-avoiding walk tree, then∑

v∈VG

|ΨG(r → v)| ≤
∑
v̂∈VT

|ΨT (r → v̂)| .

The remaining issue is getting up to the true critical threshold λc(∆). For this, the contraction
from Claim 2.4 isn’t strong enough. But as we saw previously, we can use a different potential
function.

Proposition 3.2 (Contraction; [LLY13]). Define the potential function φ : R≥0∪{+∞} → R≥0∪
{+∞} implicitly by its derivative φ′(R) = Φ(R)

def
= 1√

R(1+R)
,3 and consider the modified tree

recursion

Gd,λ(K)
def
= φ

(
Fd,λ

(
φ−1(K1), . . . , φ

−1(Kd)
))

in the variables K = φ (R). If λ ≤ (1 − δ)λc(∆), then for every 1 ≤ d ≤ ∆ − 1, Gd,λ is a
contraction in the sense that

∥∇Gd,λ(K)∥1 ≤ 1−O(δ), ∀K ∈ (R≥0 ∪ {+∞})d.

Even though Theorem 3.1 and Proposition 3.2 are now written using the marginal ratios, their
proofs are exactly the same as what we did previously. Hence, we omit them for brevity.

Proof of Proposition 1.2. We follow the same proof as what we did previously, replacing the loga-
rithmic potential with the new potential φ, and making use of the computation tree/self-avoiding

3For concreteness, we get that φ(R) = 2 arcsinh
(√

R
)
, although we will not need the true form of φ here.
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walk tree from Theorem 3.1.∑
v:distG(r,v)=ℓ

|ΨG(r → v)|

=
∑

v:distG(r,v)=ℓ

|∂log λv logRG,r(λ)| (Lemma 2.2)

=
∑

v:distG(r,v)=ℓ

∣∣∂log λv logφ
−1(KG,r(λ))

∣∣ (Definition of KG,r(λ))

=
1

RG,r(λ) · |Φ(RG,r(λ))|
∑

v:distG(r,v)=ℓ

|∂log λv
KG,r(λ)|

(Chain Rule & Inverse Function Theorem)

=
1

RG,r(λ) · |Φ(RG,r(λ))|

d∑
j=1

|∂jGd,λ(K)|
∑
v

∣∣∂log λv
KGj ,uj

(λ)
∣∣ (Theorem 3.1)

≤ 1

RG,r(λ) · |Φ(RG,r(λ))|
· ∥∇Gd,λ(K)∥1 · max

j=1,...,d

{∑
v

∣∣∂log λvKGj ,uj (λ)
∣∣}

(Hölder’s Inequality)

≤ · · · (Induction)

=
max(H,v):distG(r,v)=ℓ |∂log λv

KH,v(λ)|
RG,r(λ) · |Φ(RG,r(λ))|︸ ︷︷ ︸

(A)

·
(

max
1≤d≤∆−1

sup
K

∥∇Gd,λ(K)∥1

)ℓ

≤ (A) · (1−O(δ))ℓ. (Contraction (see Proposition 3.2))

All that remains is to bound (A) by a universal constant, which we do using marginal bounds.

Claim 3.3. Suppose λ < λc(∆). Then for every graph H of maximum degree ∆ and every vertex
v ∈ H, we have C ·λ ≤ RH,v(λ1) ≤ λ for some universal constant C > 0 independent of everything.

Proof. The upper bound RH,v(λ) ≤ λ is immediate, e.g. by using monotonicity of the tree recursion
Eq. (3) and Theorem 3.1. Now let u1, . . . , ud be the neighbors of v of which there are d ≤ ∆ many.
Applying this upper bound to the marginal ratios for these neighbors yields the lower bound
RH,v(λ) ≥ λ(1+ λ)−d, again by montonicity of the tree recursion. If we assume λ ≤ λc(∆), which
is at most O(1/∆), we get that (1 + λ)−d ≥ Ω(1) for any 1 ≤ d ≤ ∆. The claim follows.

To finish the proof, we use Claim 3.3 to bound (A). Observe that

|∂log λvKH,v(λ)| = |∂log λvφ(exp(logRH,v(λ)))|
= Φ(RH,v(λ)) ·RH,v(λ) · |∂log λv logRH,v(λ)|︸ ︷︷ ︸

=|ΨH(v→v)|=1

. (Chain Rule)

Hence,

(A) =
max(H,v):distG(r,v)=ℓ {RH,v(λ) · Φ(RH,v(λ))}

RG,r(λ) · Φ(RG,r(λ))

= max
(H,v):distG(r,v)=ℓ

√
RH,v(λ)

1 +RH,v(λ)
·
(

RG,r(λ)

1 +RG,r(λ)

)−1

(Definition of Φ)

≤
√

λ

1 + λ
· 1 + Cλ

Cλ
(Claim 3.3)

≤ 1√
C

≤ O(1).
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4 Concluding Remarks
We saw in this lecture how the proof of strong spatial mixing, namely contraction of the tree
recursion (composed with an appropriate potential function), implies spectral independence (in
fact, ℓ∞-independence). However, we do not know if strong spatial mixing itself is enough. We
also do not know the converse.

Question 1. Does strong spatial mixing by itself imply ℓ∞-independence? How about the converse?

The latter question is interesting because there are examples of spin systems where we can
establish ℓ∞-independence, but spatial mixing remains conjectural as of this writing. For instance,
consider the uniform distribution over proper q-colorings on general graphs of maximum degree ∆
when q ≥ 11

6 ∆. ℓ∞-independence was established independently by [Liu21; Bla+22] leveraging a
coupling proof of fast mixing for a more complicated (but still local) Markov chain due to [Vig00].4
However, spatial mixing on general graphs of maximum degree ∆ is only known for q ≥ 2∆.5
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