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In this lecture, we wrap up our discussion of entropic independence by bringing in the lens of
convex analysis. In the second half, we show that fast mixing of local Markov chains like Glauber
dynamics implies spectral independence, giving a weak kind of converse to the local-to-global
theorems we’ve already seen.

1 Entropic Independence via Spectral Independence for Tilts
We again restrict attention to distributions µ on {±1}n for simplicity. Recall that η-entropic
independence for µ means

DKL (ν1 ∥µ1) ≤
1 + η

n
· DKL(ν ∥µ), ∀ distributions ν on {±1}n. (1)

Here, µ1, ν1 denote the induced marginal distributions on [n]×{±1}: µ1(i, s) =
1
n Prσ∼µ[σ(i) = s].

In the previous lecture, we saw how to deduce entropic independence from spectral independence
for all pinnings plus marginal boundedness. In this lecture, we remove the marginal boundedness
assumption, but at the cost of a significantly stronger our spectral independence requirement. This
alternative set of hypotheses is crucial for certain applications (e.g. determinantal point processes),
where marginal boundedness fails dramatically.

Definition 1 (Exponential Tilt). For a vector θ ∈ Rn and a distribution µ on {±1}n, define the
exponential tilt Tθµ as the distribution on {±1}n given by

(Tθµ)(σ) ∝ µ(σ) · exp (⟨θ, σ⟩) , ∀σ ∈ {±1}n. (2)

Exponential tilts are natural distributions from the perspective of the maximum entropy prin-
ciple, which we explain in a moment. In the language of statistical physics, the vector v induces
an external field on the coordinates of σ ∼ µ. We have the following theorem.

Theorem 1.1 ([Ana+22; CE22]). Let µ be a probability measure on {±1}n, and fix a parameter
η. Then the following are equivalent:

• For every θ ∈ Rn, the tilted measure Tθµ is η-spectrally independent.

• For every θ ∈ Rn, the tilted measure Tθµ is η-entropically independent.

By sending the entries of θ to ±∞, one can obtain all conditional measures of µ as special
cases of exponential tilts. Hence, the spectral independence assumption in Theorem 1.1 is gen-
uinely stronger than spectral independence for all pinnings. However, we have made no marginal
boundedness assumptions.

1.1 Exponential Tilts as Maximum Entropy Distributions
Let us now elucidate why exponential tilts appear in Theorem 1.1.

Fact 1.2 (Special Case of Theorem 1.4). Let q be a probability measure on [n]× {±1}. Then the
variational problem

inf
ν

DKL (ν ∥µ)

s.t. ν1 = q

over distributions ν on {±1}n is optimized by an exponential tilt Tθµ for some θ ∈ Rn.
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We prove Fact 1.2 in greater generality later. But the key point here is that to certify η-
entropic independence, it suffices to restrict attention to exponential tilts ν = Tθµ in Eq. (1). This
is convenient because we can simultaneously encapsulate all exponential tilts in a single function:

Lµ(θ)
def
= logEσ∼µ [exp (⟨θ, σ⟩)] , ∀θ ∈ Rn. (3)

This is sometimes called the cumulant generating function of µ, or the logarithmic Laplace trans-
form of µ. It is the logarithm of the moment generating function of µ. As the name suggests, its
derivatives capture moment information of any exponential tilt of µ. Note that this is essentially
the same as the log-partition function logZ(λ) we saw in various contexts in prior lectures, where
Z(λ) is viewed as a multivariate polynomial; one just does a change of variables e.g. λ ∝ e2θ.

Theorem 1.3 (Special Case of Theorem 1.6). Let µ be a probability measure on {±1}n. Then
Lµ(·) has the following properties:

1. It is smooth and strictly convex.

2. Its gradient gives the mean of Tθµ: ∇Lµ(θ) = Eσ∼Tθµ [σ].

3. Its Hessian gives the covariance of Tθµ: ∇2Lµ(θ) = Cov (Tθµ).

4. Its convex conjugate (or Legendre transform/Fenchel dual) L∗µ(m)
def
= supθ {⟨θ,m⟩ − Lµ(θ)}

has the formula

L∗µ(m) = DKL

(
Tθ∗(m)µ ∥µ

)
, (4)

where θ∗(m) = ∇L∗µ(m) is the optimizer in the definition of L∗µ(m). Furthermore, ∇Lµ(·)
and ∇L∗µ(·) are inverses of each other as maps from Rn to Rn, and ∇2L∗µ(m) = Cov

(
Tθ∗(m)µ

)−1.
We also prove this in greater generality later. For now, we use it to connect entropic indepen-

dence with spectral independence.

Proof of Theorem 1.1. We first show spectral independence for all tilts implies entropic indepen-
dence for all tilts. Without loss of generality, we verify entropic independence for µ itself. Let
us first translate µ1 into the language of mean vectors m(µ)

def
= Eσ∼µ [σ] so that we can use

Theorem 1.3. Observe that µ1(i,+1) = 1
n · 1+mi(µ)

2 , µ1(i,−1) = 1
n · 1−mi(µ)

2 . It follows that

DKL (ν1 ∥µ1) =

n∑
i=1

(
ν1(i,+1) log

ν1(i,+1)

µ1(i,+1)
+ ν1(i,−1) log

ν1(i,−1)

µ1(i,−1)

)
(Definition)

=
1

n

n∑
i=1

(
1 +mi(ν)

2
log

1 +mi(ν)

1 +mi(µ)
+

1−mi(ν)

2
log

1−mi(ν)

1−mi(µ)

)
def
=

1

n
Φµ (m(ν)) ,

where Φµ (m) is a function on [−1, 1]n which isolates the dependence on the mean of ν. Hence,
entropic independence is equivalent to showing

Φµ (m(ν)) ≤ (1 + η) · DKL(ν ∥µ), ∀ν.

By Fact 1.2, it suffices to verify this inequality for measures of the form ν = Tθµ for any θ ∈ Rn,
which by Theorem 1.3, is equivalent to

Fµ(m)
def
= (1 + η) · L∗µ(m)− Φµ(m) ≥ 0, ∀m ∈ [−1, 1]n. (5)

To do this, we show that Fµ(m) is convex, and that at some point m∗, Fµ(m
∗) ≥ 0 and

∇Fµ(m
∗) = 0. This is indeed sufficient, since convexity implies Fµ(m) is lower bounded by

its first-order Taylor approximation around m∗, which is some nonnegative constant.
Let m∗ = m(µ) = ∇Lµ(0). Then Fµ(m

∗) = (1+η)·DKL(µ ∥µ)−Φµ(m(µ)) = 0. Furthermore,
∇L∗µ(m∗) = 0 since ∇L∗µ(·) and ∇Lµ(·) are inverse maps, and ∇Φµ(m

∗) = 0 since

∇Φµ(m) =
1

2
log

1−m(µ)

1 +m(µ)
− 1

2
log

1−m

1 +m
,
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where the function is applied entrywise. Let us now show the Hessian is positive semidefinite. On
the one hand, ∇2L∗µ(m) = Cov

(
Tθ∗(m)µ

)−1 by Theorem 1.3. On the other hand, ∇2Φµ(m) =

diag
(
1−m2

)−1. Hence, convexity of Fµ(m) is equivalent to

Cov
(
Tθ∗(m)µ

)
⪯ (1 + η) · diag(1−m2) = (1 + η) · diag

(
VarTθ∗(m)µ (σi)

)
i∈[n] .

In the final step, we used that the mean of Tθ∗(m)µ is m by Theorem 1.3. This matrix inequality is
exactly η-spectral independence of Tθ∗(m)µ. By assumption, this holds for arbitrary m ∈ [−1, 1]n,
and so we’re done.

Now assume entropic independence holds for all tilts; we wish to deduce spectral independence
for all tilts. In other words, by the above calculations, our assumption is that FTθµ(m) ≥ 0 for every
m ∈ [−1, 1]n,θ ∈ Rn, and our desired conclusion is global convexity of Fµ(·), i.e. ∇2Fµ(m) ⪰ 0
for all m ∈ [−1, 1]n. The key is to observe that

Fµ(m)−Fµ(m
∗)− ⟨∇Fµ(m

∗),m−m∗⟩ = FTθ∗(m∗)µ(m) ≥ 0,

where the first equality follows by direct calculation (see Appendix B), and the second inequality
follows by assumption. This is exactly the first-order characterization of global convexity applied
to Fµ(·), and so we’re done.

1.2 The Maximum Entropy Principle
Fact 1.2 is a special case of a much more general result on maximum entropy distributions. We
sketch of the proof is provided in Appendix A.

Theorem 1.4 (Maximum Entropy Distribution; see e.g. [WJ08]). Let µ be some base probability
measure on a (finite) state space Ω. Let φ : Ω → Rd be a collection of d real-valued functions and
m ∈ Rd. Then the solution to the following variational problem1

inf
ν

DKL(ν ∥µ)

s.t. Ex∼ν [φ(x)] = m,
(6)

over probability measures ν has the form

µθ(x) ∝ µ(x) · exp (⟨θ,φ(x)⟩) , (7)

for some vector θ ∈ Rd.

In statistics lingo, the collection φ are often called sufficient statistics, and the induced collec-
tion of distributions of the form Eq. (7) is called the exponential family associated to φ. Every
distribution we have come across is a maximum entropy distribution w.r.t. some very natural set
of sufficient statistics φ. For instance, Ising models arise by letting the base measure µ be uniform
over {±1}n, and letting φ be a collection of degree-2 polynomials (e.g. βxixj for edges ij ∈ E in
some underlying graph). For more in depth discussion, see the monograph [WJ08].

1.3 General Convex Analysis of KL-Divergence
Theorem 1.3 is also a special case of much more general convex duality phenomena. The following
theorem will also be useful in future lectures on variational inference.

Theorem 1.5. Let µ be a base probability measure on a (finite) state space Ω. Then the functions
f 7→ logEx∼µ

[
ef(x)

]
and ν 7→ DKL(ν ∥µ) are smooth and strictly convex.2 Furthermore, we have

the following duality relations between them.

• Gibbs Variational Principle: For every function f : Ω → R,

(Primal Program) logEx∼µ

[
ef(x)

]
= sup

ν
{Ex∼ν [f(x)]− DKL(ν ∥µ)} . (8)

Furthermore, the supremum is uniquely attained at the measure ν(x) ∝ µ(x)ef(x).
1On the surface, the optimization in Eq. (6) doesn’t “look like” a maximum entropy problem. But it is; indeed

when µ is uniform over Ω, minimizing DKL(ν ∥µ) is equivalent to maximizing Shannon entropy H(ν).
2Technically, f 7→ logEx∼µ

[
ef(x)

]
is not strictly convex if you allow shifting f by an additive constant, but this

point is immaterial.
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• Donsker–Varadhan Variational Representation: For every probability measure ν on
Ω,

(Dual Program) DKL (ν ∥µ) = sup
f

{
Ex∼ν [f(x)]− logEx∼µ

[
ef(x)

]}
. (9)

Furthermore, the supremum is uniquely attained at the function f(x) = log ν(x)
µ(x) (up to shifting

by an additive constant).

A proof is provided in Appendix A for completeness. For now, we combine it with Theorem 1.4
to deduce the following.

Theorem 1.6 (Cumulants and Entropy; see e.g. [WJ08]). Let µ be some base probability measure
on a (finite) state space Ω, and let φ : Ω → Rm be a collection of d real-valued functions. Let

Lµ,φ(θ)
def
= logEx∼µ [exp (⟨θ,φ(x)⟩)] , ∀θ ∈ Rd (10)

denote the joint cumulant generating function of φ w.r.t. µ. Then Lµ,φ(·) has the following
properties:

1. It is smooth and strictly convex.

2. Its gradient gives the mean of φ under µθ from Eq. (7): ∇Lµ,φ(θ) = Ex∼µθ
[φ(x)].

3. Its Hessian gives the covariance of φ under µθ: ∇2Lµ,φ(θ) = Eµθ

[
φ⊗2

]
− Eµθ

[φ]
⊗2.

4. Its convex conjugate (or Legendre transform/Fenchel dual) L∗µ,φ(m)
def
= supθ {⟨θ,m⟩ − Lµ,φ(θ)}

has the formula

L∗µ,φ(m) = DKL

(
µθ∗(m) ∥µ

)
, (11)

where θ∗(m) = ∇L∗µ,φ(m) is the optimizer in the definition of L∗µ,φ(m). Furthermore,
∇Lµ,φ(·) and ∇L∗µ,φ(·) are inverses of each other as maps from Rd to Rd, and ∇2L∗µ,φ(m) =

Cov
(
µθ∗(m)

)−1.
Proof Sketch. The first three items are routine computations. For the final one, observe that

Lµ,φ(θ) = sup
ν

{⟨θ,Ex∼ν [φ(x)]⟩ − DKL (ν ∥µ)} (Theorem 1.5)

= sup
θ′

{⟨θ,m (µθ′)⟩ − DKL (µθ′ ∥µ)} (Theorem 1.4)

= sup
m

{
⟨θ,m⟩ − DKL

(
µθ(m) ∥µ

)}
, (Reparametrization over feasible m)

where θ(m) is the unique3 θ such that Ex∼µθ
[φ(x)] = m. It follows that the map m 7→

DKL

(
µθ(m) ∥µ

)
must be the convex conjugate of Lµ,φ(θ). The remaining claims plus the fact

that θ(m) = θ∗(m) follow from standard arguments pertaining to convex conjugates.

2 Spectral Independence from Optimal Spectral Gap
In the previous lectures, we proved that O(1)-spectral independence implies an inverse polynomial
spectral gap for Glauber dynamics. Furthermore, in the setting of sparse graphical models, we can
actually get the optimal Ω(1/n) spectral gap. Here, we prove a weak kind of converse. It says that
O(1)-spectral independence is necessary for Glauber dynamics (or any other local Markov chain
on {±1}n) to have the optimal Ω(1/n) spectral gap.

Lemma 2.1 ([Ana+23]). Let µ be a probability measure over {±1}n, and suppose Glauber dynam-
ics for µ satisfies the (optimal up to constants) Poincaré Inequality

Varµ (f) ≤ (1 + C)n · EGD(f, f), ∀f : {±1}n → R,

for some constant C ≥ 0. Then µ is C-spectrally independent.
3This requires justification, but for brevity, we sweep this under the rug.
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Proof. We prove that Cov(µ) ⪯ (1 + C) · diag(Varσ∼µ(σi)). To do this, we need to show that
for every vector a ∈ Rn, a⊤Cov(µ)a ≤ (1 + C) ·

∑n
i=1 Varµ(σi) · a2i . Fix any such a ∈ Rn. We

construct an appropriate test function fa : {±1}n → R to plug into the Poincaré Inequality.
Consider the linear test function fa(σ)

def
= ⟨a, σ⟩. Then

Varµ (fa) = Eσ∼µ
[
⟨a, σ⟩2

]
− Eσ∼µ [⟨a, σ⟩]2

= Eσ∼µ
[
a⊤σσ⊤a

]
− a⊤Eσ∼µ[σ]Eσ∼µ[σ]

⊤a = a⊤Cov(µ)a.

On the other hand,

n · EGD(fa, fa) =
n

2

∑
σ∈{±1}n

µ(σ) ·
n∑

i=1

PGD

(
σ → σ⊕i

)
·
(
fa(σ)− fa

(
x⊕i
))2

= 2

n∑
i=1

a2i
∑

σ∈{±1}n

µ(σ)µ
(
σ⊕i
)

µ(σ) + µ (σ⊕i)
(Using fa(σ)− fa

(
σ⊕i
)
= 2aiσi)

= 4

n∑
i=1

a2i
∑

σ:σi=+1

(
µ(σ) + µ

(
σ⊕i
))

· h
(

µ(σ)

µ(σ) + µ (σ⊕i)

)
(Where h(x)

def
= x(1− x))

≤ 4
n∑

i=1

a2i · h

( ∑
σ:σi=+1

(
µ(σ) + µ

(
σ⊕i
))

· µ(σ)

µ(σ) + µ (σ⊕i)

)
(Jensen’s Inequality and concavity of h)

= 4

n∑
i=1

a2i · h (µi(+1))

=

n∑
i=1

a2i ·Varµ(σi).

Put together, we have

a⊤ Cov(µ)a = Varµ (fa) ≤ (1 + C)n · EGD(fa, fa) ≤ (1 + C) · a⊤ diag (Varσ∼µ(σi))a

as desired.

3 ℓ∞-Independence via Contractive Coupling
Our goal in this section is to give an analog of Lemma 2.1 where we strengthen both the as-
sumption and the conclusion using couplings. We say µ is ℓ∞-independent with constant η if
∥Ψµ∥ℓ∞→ℓ∞

≤ 1 + η. We say µ is η-coupling independent if maxi∈[n] W1

(
µi←+1, µi←−1) ≤ 1 + η,

where µi←+1, µi←−1 are viewed as distributions on {±1}n. These terminology were first coined in
[KKS21; CZ23], respectively. Here, W1(·, ·) denotes the 1-Wasserstein metric induced by Hamming
distance dH(·, ·) on {±1}n.

We always have λmax (Ψµ) ≤ ∥Ψµ∥ℓ∞→ℓ∞
since the latter is a matrix norm induced by a

vector norm. Hence, ℓ∞-independence is stronger than spectral independence. [KKS21] established
interesting Chernoff-type concentration inequalities which require ℓ∞-independence. The following
lemma shows that coupling independence is the strongest of the three.

Lemma 3.1 ([CZ23]). For every i ∈ [n],

n∑
j=1

|Ψµ(i → j)| ≤ W1

(
µi←+1, µi←−1) .
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Proof. Observe that

|Ψµ(i → j)| = dTV
(
µi←+1
j , µi←−1

j

)
= inf

Coupling ξj
of µi←+1

j ,µi←−1
j

E(xj ,yj)∼ξj [I [xj ̸= yj ]] (Coupling Lemma)

≤ inf
Coupling ξ

of µi←+1,µi←−1

E(x,y)∼ξ [I [xj ̸= yj ]] .

It follows that
n∑

j=1

|Ψµ(i → j)| ≤
n∑

j=1

inf
Coupling ξ

of µi←+1,µi←−1

E(x,y)∼ξ [I [xj ̸= yj ]]

≤ inf
Coupling ξ

of µi←+1,µi←−1

n∑
j=1

E(x,y)∼ξ [I [xj ̸= yj ]]︸ ︷︷ ︸
=E(x,y)∼ξ[dH(x,y)]

= W1

(
µi←+1, µi←−1) .

We now show that having a contractive coupling proof of fast mixing for a local Markov chain
like Glauber dynamics implies O(1)-coupling independence.

Lemma 3.2 ([Liu21; Bla+22]). Suppose the distribution µ satisfies Dobrushin’s uniqueness crite-
rion, i.e. ∥Rµ∥ℓ∞→ℓ∞

≤ 1− ϵ for some constant ϵ > 0, where recall

Rµ(i → j)
def
= max

τ :[n]\{i,j}→{±1}
dTV

(
µτ,i←+1
j , µτ,i←−1

j

)
, ∀i ̸= j,

and Rµ(i → i) = 0 for all i ∈ [n]. Then µ is 1−ϵ
ϵ -coupling independent.

Remark 1. Lemma 3.2 can be generalized considerably. In particular, one can replace Glauber
dynamics with any Markov chain which changes O(1)-many coordinates in each step. One can also
allow for variable-length/multi-step couplings of the chain, so long as Hamming distance contracts
roughly by a constant factor every O(n)-steps. Finally, one can even allow weighted Hamming
metrics. The main technique goes under the name Stein’s method for Markov chains, and is a
generically useful tool for bounding the transportation distance between distributions; see e.g.
[BN19; RR19].

We before we get into the details of the proof, let us describe a generic strategy for bounding
W1(ν, π); one can then of course replace ν, π with µi←+1, µi←−1. Fix a test function f : {±1}n → R
which is 1-Lipschitz w.r.t. Hamming distance. If we can bound |Eν [f ]− Eπ[f ]| for all such f , then
we get a bound on W1(ν, π) just by Kantorovich–Rubinstein duality for Wasserstein distance.

A natural strategy for constructing an “efficient” coupling/transport plan between ν, π is to use
a Markov chain which simultaneously mixes rapidly, yet makes only “local moves”. Let Pπ be an
ergodic Markov chain with stationary measure π (e.g. Glauber dynamics); we initialize it with ν.
Then

|Eν [f ]− Eπ[f ]| =

∣∣∣∣∣
∞∑
t=0

(
ν⊤Pt

πf − ν⊤Pt+1
π f

)∣∣∣∣∣ (Telescoping)

≤
∞∑
t=0

∣∣ν⊤(Id− Pπ)P
t
πf
∣∣ (Triangle Inequality)

≤ E
x∼ν

y∼Pπ(x→·)

[ ∞∑
t=0

∣∣(Pt
πf
)
(x)−

(
Pt
πf
)
(y)
∣∣] (More Triangle Inequality)

= E
x∼ν

y∼Pπ(x→·)

[ ∞∑
t=0

E(Xt,Yt)

[
|f(Xt)− f(Yt)| | X0=x

Y0=y

]]
,
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where {(Xt, Yt)}∞t=0 is any coupling of Pπ. Intuitively, this seems very good if Pπ is local because
y ∼ Pπ(x → ·) means dH(x, y) = dH(X0, Y0) is small. If in addition Pπ admits a coupling proof of
rapid mixing (e.g. π satisfies Dobrushin’s condition), then we also expect E(Xt,Yt) [|f(Xt)− f(Yt)|]
to quickly decay in t.

Unfortunately this isn’t quite good enough because the rate of decay isn’t fast enough. Indeed,
for Glauber dynamics say, the best one can hope for is E(Xt,Yt) [|f(Xt)− f(Yt)|] ≤

(
1− ϵ

n

)t for some
constant 0 < ϵ < 1. Hence, we would pay ≈ 1 for each t up to O(n), leading to |Eν [f ]− Eπ[f ]| ≤
O(n). But we always trivially have |Eν [f ]− Eπ[f ]| ≤ n by 1-Lipschitzness of f , so it seems we
have achieved very little.

The trick that will save us is to replace Id − Pπ in the first inequality step with Pν − Pπ for
some other Markov chain Pν whose stationary measure is ν. This trick will allow us to pick up
a factor of maxx dTV (Pν(x → ·),Pπ(x → ·)), which will be O(1/n) for a good choice of Pν rather
than O(1). Let us now formalize this strategy.

Proof of Lemma 3.2. For notational convenience, we write ν, π instead of µi←+1, µi←−1, which are
supported on {±1}[n]\{i}. Let Pν ,Pπ denote Glauber dynamics w.r.t. ν, π, respectively. Then for
every 1-Lipschitz test function f ,

|Eν [f ]− Eπ[f ]| ≤
∞∑
t=0

∣∣ν⊤(Pν − Pπ)P
t
πf
∣∣ (Triangle Inequality)

≤ Ex∼ν

[ ∞∑
t=0

∣∣∣∣∣∑
y

(Pν(x → y)− Pπ(x → y)) ·
(
Pt
πf
)
(y)

∣∣∣∣∣
]

(More Triangle Inequality)

≤ Ex∼ν

 ∞∑
t=0

∣∣∣∣∣∣
∑
y ̸=x

(Pν(x → y)− Pπ(x → y)) ·
((
Pt
πf
)
(y)−

(
Pt
πf
)
(x)
)∣∣∣∣∣∣


(Using P(x → x) = 1−
∑

y ̸=x P(x → y))

≤ Ex∼ν

∑
y ̸=x

|Pν(x → y)− Pπ(x → y)| ·
∞∑
t=0

E(Xt,Yt)

[
|f(Xt)− f(Yt)| | X0=x

Y0=y

]
≤ Ex∼ν

∑
y ̸=x

|Pν(x → y)− Pπ(x → y)| ·
∞∑
t=0

E(Xt,Yt)

[
dH(Xt, Yt) | X0=x

Y0=y

] ,

(1-Lipschitzness of f)

where {(Xt, Yt)}∞t=0 is any coupling of Pπ. Now, let us recall that ν = µi←+1, π = µi←−1. Since µ
satisfies Dobrushin’s condition, so do ν, π. Hence, we take {(Xt, Yt)}∞t=0 to be the one induced by
one-step greedy path coupling, and so

E(Xt,Yt)

[
dH(Xt, Yt) | X0=x

Y0=y

]
≤ dH(x, y) ·

∞∑
t=0

(
1− ϵ

n− 1

)t

=
n− 1

ϵ
· dH(x, y).

Since we’re looking at Glauber dynamics, only y satisfying dH(x, y) = 1 will contribute to the sum
over y ̸= x. It follows that

|Eν [f ]− Eπ[f ]| ≤
n− 1

ϵ
· max
σ:[n]\{i}→{±1}

∑
j ̸=i

∣∣Pν

(
σ → σ⊕j

)
− Pπ

(
σ → σ⊕j

)∣∣
≤ 1

ϵ
·max

σ

∑
j ̸=i

∣∣∣∣∣ ν
(
σ⊕j

)
ν(σ) + ν (σ⊕j)

−
π
(
σ⊕j

)
π(σ) + π (σ⊕j)

∣∣∣∣∣


≤ 1

ϵ
·
∑
j ̸=i

|Rµ(i → j)| (Using ν = µi←+1, π = µi←−1)

≤ 1− ϵ

ϵ
.
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A Unfinished Proofs
Proof Sketch of Theorem 1.4. We use Lagrange multipliers. Viewing ν as a vector in RΩ, consider
the Lagrangian

Lµ(ν,θ, λ)
def
=
∑
x∈Ω

ν(x) log
ν(x)

µ(x)
+

d∑
i=1

θi ·

(
mi −

∑
x∈Ω

ν(x)φi(x)

)
+ λ

(
1−

∑
x∈Ω

ν(x)

)
.

We have ∇θLµ (ν,θ, λ) = 0 and ∂λLµ (ν,θ, λ) = 0 if and only if the constraints Ex∼ν [φ(x)] = m
and

∑
x∈Ω ν(x) = 1 are satisfied. Furthermore,

∇θLµ (ν,θ, λ) = 1 + log
ν

µ
− ⟨θ,φ⟩ − λ,

which yields zero if and only if ν(x) ∝ µ(x) · exp (⟨θ,φ(x)⟩) for all x ∈ Ω. Here, the constant eλ−1
gives the constant of proportionality, and just ensures that ν is normalized to

∑
x∈Ω ν(x) = 1.
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Proof of Theorem 1.5. Convexity of f 7→ logEx∼µ
[
ef(x)

]
follows by Cauchy–Schwarz:

logEµ

[
e(f+g)/2

]
= log

(∑
x∈Ω

√
µ(x)ef(x) ·

√
µ(x)eg(x)

)

≤ log

√∑
x∈Ω

µ(x)ef(x) ·
√∑

x∈Ω
µ(x)eg(x)


=

1

2
logEµ

[
ef
]
+

1

2
logEµ [e

g] .

We also get strict convexity (except when f = g + c for a constant c) just by using the equality
case of Cauchy–Schwarz. Strict convexity of ν 7→ DKL(ν ∥µ) just follows from strict convexity of
the univariate function x 7→ x log x. Now that we have strict convexity, the remaining claims can
be established by checking first-order stationarity conditions.

B Unfinished Calculations with Fµ(·)
In the proof of Theorem 1.1, we claimed that Fµ(m)−Fµ(m

∗)−⟨∇Fµ(m
∗),m−m∗⟩ = FTθ∗(m∗)µ(m).

We justify this here. We first separate terms involving L∗µ(·) and Φµ(·) in the left-hand side, which
becomes

(1 + η) ·
[
L∗µ(m)− L∗µ(m∗)− ⟨∇L∗µ(m∗),m−m∗⟩

]︸ ︷︷ ︸
(A)

− [Φµ(m)− Φµ(m
∗)− ⟨∇Φµ(m

∗),m−m∗⟩]︸ ︷︷ ︸
(B)

We must show that (A) = L∗Tθ∗(m∗)µ(m) and (B) = ΦTθ∗(m∗)µ(m). We do each in turn.

(A) = DKL

(
Tθ∗(m)µ ∥µ

)
− DKL

(
Tθ∗(m∗)µ ∥µ

)
− ⟨θ∗(m∗),m−m∗⟩

= ⟨θ∗(m),m⟩ − Lµ(θ
∗(m))− ⟨θ∗(m∗),m∗⟩+ Lµ(θ

∗(m∗))− ⟨θ∗(m∗),m−m∗⟩

= ⟨θ∗(m)− θ∗(m∗),m⟩ − log
Eσ∼µ

[
e⟨θ
∗(m),σ⟩]

Eσ∼µ
[
e⟨θ∗(m∗),σ⟩

]
= ⟨θ∗(m)− θ∗(m∗),m⟩ − LTθ∗(m∗)µ (θ

∗(m)− θ∗(m∗))

= L∗Tθ∗(m∗)µ(m).

For (B), it is more convenient to rewrite Φµ(m) as

Φµ(m) =

n∑
i=1

(
1

2
log
(
1−m2

i

)
+

mi

2
log

1 +mi

1−mi

)
−

n∑
i=1

mi

2
log

1 +mi(µ)

1−mi(µ)
− 1

2

n∑
i=1

log
(
1−mi(µ)

2
)

︸ ︷︷ ︸
Independent of m

.

Then

(B) =

n∑
i=1

(
1

2
log
(
1−m2

i

)
+

mi

2
log

1 +mi

1−mi

)
−

n∑
i=1

(
1

2
log
(
1− (m∗i )

2
)
+

m∗i
2

log
1 +m∗i
1−m∗i

)
+

〈
m−m∗,

1

2
log

1−m(µ)

1 +m(µ)
−∇Φµ(m

∗)

〉
= ΦTθ∗(m∗)µ(m).
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