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In the previous lecture, we proved that O(1)-spectral independence implies an inverse poly-
nomial spectral gap lower bound for Glauber dynamics, which we then improved to the optimal
Ω(1/n) lower bound when our distribution is globally Markov w.r.t. a bounded-degree graph. In
this lecture, we analyze contraction of KL-divergence using similar tools. In particular, we estab-
lish optimal Ω(1/n) lower bounds on the modified and standard log-Sobolev constants, as well as
the optimal O(n log n)-mixing of Glauber dynamics. The main tool in our discussion will be an
analog of spectral independence for entropy known as entropic independence [Ana+22].

One of the main theorems of this lecture is the following, which we copied (and abridged) from
the previous lecture.

Theorem 0.1 (Optimal Mixing for Sparse Graphical Models; [CLV21]). Let µ be a probability
measure on {±1}n. Suppose µ satisfies the following properties:

(i) Spectral Independence: There exists η ≤ O(1) such that for every S ⊆ [n] and every
pinning τ : S → {±1}, the conditional distribution µτ is η-spectrally independent.

(ii) Conditional Independence: There exists a graph G = (V,E) on vertex set V = [n] of
maximum degree ∆ such that µ is globally Markov w.r.t. G.

(iii) B-Marginal Boundedness: Suppose there exists a constant 0 < B ≤ 1/2 such that for
every S ⊆ [n], every pinning τ : S → {±1}, and every i ∈ [n] \S, we have µτ

i (+1), µτ
i (−1) ≥

B.

Then γ(PGD), ϱ(PGD), κ(PGD) ≥ Ωη,∆,B(1/n) and PGD mixes in Oη,∆,B(n log n)-steps.

1 Entropic Independence
In the previous lecture, the key step to bounding the Poincaré constant was showing that spectral
independence implies the following variance inequality(

1− 1 + η

n

)
·Varµ (f) ≤ Ei∼[n]

[
Es∼µi

[
Varµi←s (f)

]]
∀f : {±1}n → R, (1)

or equivalently,

Varµ1
(f1) ≤

1 + η

n
·Varµ (f) ∀f : {±1}n → R. (2)

Here, recall that µ1, f1 are supported on [n] × {±1}, and defined by marginalization: µ1(i, s) =
1
n Prµ[i ← s] and f1(i, s) = Eσ∼µi←s [f ] for all (i, s) ∈ [n] × {±1}. These inequalities allowed us
to inductively factorize the variance until we obtained Ei∼[n]

[
Eτ∼µ−i [Varµτ (f)]

]
= EGD(f, f), the

Dirichlet form appearing in the Poincaré Inequality. The entropic analog of these inequalities is
what we need to factorize the entropy and establish bounds on the modified and standard log-
Sobolev constants.

Definition 1 (Entropic Independence; [Ana+22]). We say µ is η-entropically independent if(
1− 1 + η

n

)
· Entµ (f) ≤ Ei∼[n]

[
Es∼µi

[
Entµi←s (f)

]]
∀f : {±1}n → R, (3)
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or equivalently,

Entµ1 (f1) ≤
1 + η

n
· Entµ (f) , ∀f : {±1}n → R≥0, (4)

In the literature, these inequalities also go under the name (approximate) subadditivity of en-
tropy or (approximate) Shearer Inequalities; see e.g. [Bar+11; Bla+22]. They are more often
written as

DKL (ν1 ∥µ1) ≤
1 + η

n
·DKL (ν ∥µ) , ∀ν.

Proposition 1.1 (Entropic Independence =⇒ Entropy Factorization (Informal); [Ana+22]). Let
µ be a probability measure on {±1}n, and fix 1 ≤ k ≤ n. Suppose there exists η ≤ O(1) such that
for every S ⊆ [n] with |S| ≤ n − k − 1 and every pinning τ : S → {±1}, the conditional measure
µτ is η-entropically independent. Then

Entµ (f) ≤ Ck · ES∼([n]
k )

[
Eτ∼µV \S [Entµτ (f)]

]
, ∀f : {±1}n → R≥0, (5)

with Ck ≲
(
n
k

)1+η.

Proof Sketch. Follow the proof of the first “spectral independence implies fast mixing” theorem in
the previous lecture, using Eq. (3) and replacing every occurrence of Var(·) with Ent(·).

Remark 1. In the case k = 1, Eq. (5) is often referred to as approximate tensorization of entropy.

Lemma 1.2 (Consequences of Entropy Factorization; see e.g. [CMT15]). Let µ be a probability
measure on on {±1}n. If µ satisfies Eq. (5) with k = 1, then Glauber dynamics w.r.t. µ has
modified log-Sobolev constant ϱ(PGD) ≥ 1

C1
. If in addition µ is B-marginally bounded in the sense

of Item (iii), then Glauber dynamics w.r.t. µ has standard log-Sobolev constant κ(PGD) ≥ 1
CB·C1

,
where CB = 1−2·B

log( 1
B−1)

is some constant depending on B.

1.1 Optimal Entropy Factorization for Glauber Dynamics
The last ingredient to prove Theorem 0.1 is to show that spectral independence (along with
marginal boundedness) implies entropic independence. This is proved in the next section. Once
we have entropic independence, all of the same entropy factorization arguments go through.

Theorem 1.3 ([CE22]). Suppose µ is a distribution on {±1}n satisfying the spectral independence
and marginal boundedness assumptions Items (i) and (iii) from Theorem 0.1. Then µ and all of
its conditional distributions are O(η/B2)-entropically independent.

Proof Sketch of Theorem 0.1. From our assumptions combined with Theorem 1.3, we know that
µ and its conditionals are O(η/B2)-entropically independent. We then apply Proposition 1.1 with
k = (1− θ)n for a constant 0 ≤ θ ≤ 1, and then further factorize the entropy using the shattering
property for sparse graphs for the remaining levels. This is exactly as we did in our proof of the
optimal Poincaré Inequality. One can literally follow every step of the proof in the previous lecture
and replace every occurrence of Var(·) with Ent(·). One should be slightly careful in the final
factorization step, where we have Entµτ

U
(f) for a pinning τ : V \ S → {±1} and U is a connected

component of G[S] (which is typically small by the Shattering Lemma); for a full implementation,1
see [CLV21]. Ultimately, we obtain Eq. (5) with C1 ≤ Oη,∆,B(n). Applying Lemma 1.2 finishes
the proof.

1One way is to bound the standard log-Sobolev constant of Glauber dynamics w.r.t. µτ
U , which turns out implies

entropy factorization. We can apply off-the-shelf comparison inequalities between the standard log-Sobolev constant
and the Poincaré constant, making use of marginal boundedness, and use spectral independence to bound the
Poincaré constant. Notably, we can afford all sorts of exponential losses in these arguments because the probability
that |U | = ℓ is exponentially decaying in ℓ, with a rate we can make as fast as we want by tuning θ.
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2 Spectral Independence + Marginal Boundedness =⇒ En-
tropic Independence: Proof of Theorem 1.3

We break the proof of Theorem 1.3 into two steps: We first reduce entropic independence to
a more “local” entropy inequality which only involves “sufficiently averaged” functions like f1.
This averaging will allow us to compare “local entropies” with “local variances” by leveraging
marginal boundedness. In particular, in our second step, we reduce this “local” entropy inequality
to the analogous “local” variance inequality, which is guaranteed by spectral independence by the
arguments provided in the previous lecture.

Let us now set up the required notation. Fix a function f : {±1}n → R. For 0 ≤ k ≤ n, define
the function fk on pinnings of k coordinates by

fk(τ)
def
= Eσ∼µ [f(σ) | σS = τ ] , ∀τ : S → {±1} s.t. |S| = k,

and the distribution µk on pinnings by

µk(τ)
def
=

1(
n
k

) Pr
σ∼µ

[σS = τ ].

Note that µn = µ, fn = f , and that if f = dν
dµ is the density of some other probability measure on

{±1}n, then fk = dνk

dµk
for all 0 ≤ k ≤ n. Note that Eµk

[fk] = Eµ[f ] for all 0 ≤ k ≤ n.
Remark 2. A dynamical way to view these distributions µk and functions fk is to think of them
as “projections” from the global distribution µ on {±1}n and the global function f : {±1}n → R
down to partial configurations on k coordinates. In particular, if we let Dn↘k denote the Markov
kernel which acts on distributions ν by sampling σ ∼ ν and outputting the restriction σS for a
uniformly random k-subset S ∼

(
[n]
k

)
, then µk = µDn↘k. Similarly, we can let Uk↗n denote the

“dual” action w.r.t. µ, where given a distribution νk on pinnings on k coordinates, we first sample a
random such pinning τ ∼ νk, and then output a random complete configuration σ ∼ µ conditioned
on σ agreeing with τ . Then µ = µkUk↗n and fk = Uk↗nf .

We can combine this notation with conditioning. For a pinning τ : S → {±1} and 0 ≤ k ≤
n− |S|, we can define

fτ
k (τ

′) = fk+|S|(τ ⊔ τ ′), ∀τ ′ : T → {±1} s.t. |T | = k, T ∩ S = ∅,

and

µτ
k(τ

′) =
1(

n−|S|
k

) Pr
σ∼µ

[σT = τ ′ | σS = τ ] , ∀τ ′ : T → {±1} s.t. |T | = k, T ∩ S = ∅.

To reduce cumbersome notation, we write Entτk(·) instead of Entµτ
k
(·).

Definition 2 (Local Entropy Contraction). For 0 ≤ α ≤ 1, we say µ satisfies α-local entropy
contraction if for every global function f : {±1}n → R≥0, the induced projections f1, f2 satisfy

Ent1 (f1) ≤
1

2

(
1− α

n

)−1

· Ent2 (f2) .

With these notations in hand, we can formalize our two steps.

Theorem 2.1 (“Local-to-Global” Entropy Contraction; [CLV21]). Suppose there exist constants
0 ≤ α0, . . . , αn−2 ≤ 1 such that for every 0 ≤ k ≤ n − 2, the following holds: For every pinning
τ : S → {±1} s.t. |S| = k, the conditional measure µτ satisfies α-local entropy contraction, i.e.

Entτ1 (f
τ
1 ) ≤

1

2

(
1− α

n− k

)−1

· Entτ2 (fτ
2 ) , ∀f : {±1}n → R≥0.

Then for every 0 ≤ k ≤ ℓ ≤ n and every global function f : supp (µ)→ R≥0,

Entk (fk)

βk
≤ Entℓ (fℓ)

βℓ
, where βk

def
=

k−1∑
j=0

j−1∏
i=0

(
1− 2α

n− i

)
. (6)

Furthermore, analogous bounds hold for every conditional measure µτ .
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Proposition 2.2 ([CLV21]). Suppose µ is a distribution on {±1}n satisfying the spectral inde-
pendence and marginal boundedness assumptions Items (i) and (iii) from Theorem 0.1. Then µ
satisfies the α-local entropy contraction assumption of Theorem 2.1 with α = O(η/B2).

Proof of Theorem 1.3. By Proposition 2.2, we have α-local entropy contraction with α = O(η/B2).
Hence, applying Theorem 2.1 with k = 1, ℓ = n, we obtain

Ent1 (f1) ≤
1

βn
· Entµ (f) , ∀f : {±1}n → R≥0,

where

βn =

n−1∑
j=0

j−1∏
i=0

(
1− O(η/B2)

n− i

)
≳

n−1∑
j=0

(
n

n− j

)−O(η/B2)

.

We are done if we can show that βn ≥ Ω(B2n/η). If we truncate the sum to j = 0, . . . , θn for
some constant 0 ≤ θ ≤ 1, then we get a lower bound of

βn ≳ θ(1− θ)O(η/B2) · n.

A straightforward calculus exercise reveals the optimal choice of θ is O(B2/η), and so we’re done.

While we only applied Theorem 2.1 with k = 1, ℓ = n, it will be useful in the proof to in-
ductively establish the general case 0 ≤ k ≤ ℓ ≤ n. Also note that the case of ℓ = n and k
arbitrary, Theorem 2.1 gives an analog of Proposition 1.1 with the same conclusion but replacing
the assumption of entropic independence with local entropy contraction in the sense of Definition 2.
Even though local entropy contraction implies entropic independence by Theorem 2.1, [Ana+22]
constructs simple examples where entropic independence holds but local entropy contraction fails.

2.1 Proof of Local-to-Global Entropy Contraction
The main tool we need is again the following lemma on entropy decomposition, which can be
proved via direct calculation.

Lemma 2.3 (Law of Total Entropy). Fix f : {±1}n → R≥0. Then for every 0 ≤ k ≤ ℓ ≤ n,

Entℓ (fℓ) = Entk (fk) + Eσ∼µk

[
Entσℓ−k

(
fσ
ℓ−k

)]
.

Proof of Theorem 2.1. It suffices to prove the special case ℓ = k+1, since the general case Eq. (6)
follows by chaining these together. We go by induction. The base case k = 1 follows immediately
by the definition of local entropy contraction. By Lemma 2.3,

Entk+1 (fk+1)− Entk−1 (fk−1) = Eσ∼µk−1
[Entσ2 (f

σ
2 )]

Entk (fk)− Entk−1 (fk−1) = Eσ∼µk−1
[Entσ1 (f

σ
1 )] .

Local entropy contraction allows us to compare the right-hand sides of these two identities, and
induction allows us to control the second difference Entk (fk)− Entk−1 (fk−1). This suggests how
we should implement the inductive step. In particular,

Entk+1 (fk+1)− Entk−1 (fk−1) = Eσ∼µk−1
[Entσ2 (f

σ
2 )] (Lemma 2.3)

≥ 2

(
1− α

n− k + 1

)
· Eσ∼µk−1

[Entσ1 (f
σ
1 )] (Definition 2)

= 2

(
1− α

n− k + 1

)
· (Entk (fk)− Entk−1 (fk−1)) (Lemma 2.3)
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Since 1
βk−1

Entk−1 (fk−1) ≤ 1
βk

Entk (fk) by the inductive hypothesis,

Entk+1 (fk+1) ≥ 2

(
1− α

n− k + 1

)
· Entk (fk)−

(
1− 2α

n− k + 1

)
· Entk−1 (fk−1)

≥
(
2

(
1− α

n− k + 1

)
−

(
1− 2α

n− k + 1

)
· βk−1

βk

)
· Entk (fk)

(Inductive Hypothesis)

=

(
1−

(
1− 2α

n− k + 1

)
·
(
βk−1

βk
− 1

))
· Entk (fk)

=
βk+1

βk
· Entk (fk) .

This completes the induction and the proof.

2.2 Proof Sketch of Proposition 2.2
The key lemmas are the following. The first relates the deficit in local entropy contraction to the
variance of f1 w.r.t. µ1. The second shows that when the distribution is marginally bounded,
this variance Var1 (f1) can be meaningfully compared with Ent1 (f1) again up to constant factors.
Combining them in a straightforward manner immediately implies Proposition 2.2.

Lemma 2.4 ([CGM21]). Let µ be η-spectrally independent. Then

Ent2 (f2)− 2 · Ent1 (f1) ≥ −
η

n− 1
· Var1 (f1)
Eµ1

[f1]
, ∀f : {±1}n → R≥0.

Lemma 2.5. Suppose µ is B-marginally bounded. Then for every global function f : {±1}n →
R≥0, the induced local function f1 : [n]× {±1} → R≥0 is “balanced” in the sense that

f1(i, s) ≤
1

B
· Eµ1

[f1] , ∀(i, s) ∈ [n]× {±1}. (7)

For such functions,

Ent1 (f1) ≤
Var1 (f1)

Eµ1
[f1]

≤ 4

B2
· Ent1 (f1) .

Proof Sketch of Lemma 2.5. We prove Eq. (7). The rough intuition behind the second conclusion
is that x 7→ x log x behaves quadratically in a neighborhood of 1, which is guaranteed by Eq. (7);
we refer interested readers to [CLV21] for the rigorous proof of this comparison between variance
and entropy. To justify Eq. (7), first note that we may assume by a global rescaling of f that
Eµ[f ] = 1, i.e. f = dν

dµ for some other distribution ν on {±1}n. Then f1 = dν1

dµ1
and Eµ1

[f1] = 1.
From here, we immediately have that for all (i, s) ∈ [n]× {±1},

f1(i, s) =
ν1(i, s)/n

µ1(i, s)/n
=

νi(s)

µi(s)
≤ νi(s)/B ≤ 1/B =

1

B
· Eµ1

[f1] .

Proof of Lemma 2.4. Since the desired inequality is scale invariant, we may assume Eµ[f ] = 1, i.e.
f = dν

dµ for some other distribution ν on {±1}n. Our goal is to reduce Ent2 (f2)−2 ·Ent1 (f1) down
to the quadratic form of an appropriate correlation matrix which can be related to Ψµ. Towards
this, observe that we can view µ2 as a 2n× 2n symmetric matrix given by

µ2((i, s), (j, t)) =
1(
n
2

) · Pr
σ∼µ

[σ(i) = s, σ(j) = t],

whose rows and columns sum to 2 · µ1. Similarly, we can view f2 = dν2

dµ2
as a symmetric matrix;

in particular, by the same reasoning as for µ2, the rows and columns of ν2 = f2µ2 sum to 2 · ν1 =
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2 ·f1µ1. A quick calculation, with x, y denoting coordinate-assignments pairs in [n]×{±1}, reveals
that

Ent1 (f1) =
∑

x∈[n]×{±1}

µ1(x)f1(x) log f1(x)

=
1

2
· E{x,y}∼µ2

[f2(x, y) · log (f1(x) · f1(y))] ,

and so

Ent2(f2)− 2 · Ent1(f1) = E{x,y}∼µ2
[f2(x, y) · (log f2(x, y)− log (f1(x) · f1(y)))]

≥ E{x,y}∼µ2
[(f2(x, y)− f1(x)f1(y))] (a log a

b ≥ a− b)

= 1−
〈
f1,

(
n

n− 1
Qµ −

1

n− 1
Id

)
f1

〉
µ1

(Eµ2
[f2] = 1)

≥ −
(

n

n− 1
λ2 (Qµ)−

1

n− 1

)
·Var1 (f1) , (Poincaré Inequality for Qµ)

where Qµ ∈ R2n×2n is the matrix of conditional probabilities we saw in the previous lecture:

Qµ((i, s), (j, t)) =
1

n
Pr
σ∼µ

[σ(j) = t | σ(i) = s] , ∀(i, s), (j, t) ∈ [n]× {±1}.

In particular, we already showed that λ2(Qµ) =
λmax(Ψµ)

n , and so we’re done.
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