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In this lecture, we refocus our attention on Glauber dynamics. The goal is to prove that if
the stationary measure µ satisfies a “limited correlations property” called spectral independence
[ALO21], then Glauber dynamics mixes in polynomial-time. Furthermore, in the setting of Gibbs
distributions of spin systems on bounded-degree graphs, the mixing time is actually the optimal
O(n log n). The bulk of this lecture will consider simply the case of binary random variables, i.e.
µ will be supported on the discrete hypercube {±1}n. This restriction is immaterial, and we will
comment on how to extend everything to arbitrary discrete product spaces; see Section 5.

In the setting of {±1}n, for a given configuration σ ∈ {±1}n and an index i ∈ [n], define
σ⊕i ∈ {±1}n by setting σ⊕i(i) = −σ(i) and σ⊕i(j) = σ(j) for all j ̸= i. Then Glauber dynamics
PGD evolves as follows: From the current configuration σ ∈ {±1}n, we

• select a uniformly random coordinate i ∼ [n], and

• transition to σ⊕i with probability
µ(σ⊕i)

µ(σ)+µ(σ⊕i) .

Recall that PGD is always reversible w.r.t. µ by design. Since we will establish functional inequalities
for Glauber dynamics specifically, let us write down its Dirichlet form explicitly.

EGD(f, g)
def
=

1

2

∑
σ∈{±1}n

µ(σ) · 1
n

n∑
i=1

µ
(
σ⊕i

)
µ(σ) + µ (σ⊕i)

·
(
f(σ)− f

(
σ⊕i

))
·
(
g(σ)− g

(
σ⊕i

))
= Ei∼[n]

[
Eτ∼µ−i [Covµτ (f, g)]

]
.

(1)

In the special case f = g, this in particular says that EGD(f, f) = Ei∼[n]
[
Eτ∼µ−i

[Varµτ (f)]
]
.

1 Fast Mixing via Spectral Independence
Definition 1 (Spectral Independence; [ALO21]). Let µ be a probability measure over {±1}n.
Define the (conditional) influence matrix Ψµ ∈ Rn×n via

Ψµ(i→ j)
def
= Pr

σ∼µ
[j ← +1 | i← +1]− Pr

σ∼µ
[j ← +1 | i← −1] , ∀i, j ∈ [n].

Note that Ψµ(i → i) = 1 for all i ∈ [n]. For η ≥ 0, we say µ is η-spectrally independent if
λmax (Ψµ) ≤ 1 + η.

In general, Ψµ is asymmetric, and may have both positive and negative entries. Nonetheless,
it always has real eigenvalues by the following lemma, which also gives an equivalent character-
ization of spectral independence. The proof is a straightforward calculation, and is provided in
Appendix A.

Fact 1.1. Let Dµ ∈ Rn×n be the diagonal matrix with entries Dµ(i, i) = Varµ (σi). Then Ψµ =
D−1µ Cov(µ), and µ is η-spectrally independent if and only if Cov(µ) ⪯ (1 + η) ·Dµ.

Example 1 (Product Measures). Suppose µ is uniform over {±1}n. Then by independence of
the coordinates, we have that Ψµ = Id, and so µ is 0-spectrally independent. This is our “gold
standard”.
Example 2 (Extreme Bimodality). Suppose µ = 1

2δ+1 +
1
2δ−1. Then knowing the value of a single

coordinate completely determines the values of all other coordinates. Hence, Ψµ = 11⊤ and µ
is (n − 1)-spectrally independent. This distribution is particularly bad for local Markov chains
because one must make a global sign flip in order to get from +1 to −1 (and vice versa).
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Example 3 (Negatively Correlated (Homogeneous) Distributions). Suppose µ is supported on a
slice

(
[n]
k

)
of the Boolean cube {±1}n ∼= 2[n], i.e. it is homogeneous. Further suppose µ is negatively

correlated, i.e. PrS∼µ[j ∈ S | i ∈ S] ≤ PrS∼µ[j ∈ S | i /∈ S] for all i, j ∈ [n]. For example, µ
could be the uniform measure over spanning trees of a graph. Such distributions are extremely well-
studied because they imply nice mixing [FM92; AOR16] and concentration phenomena [PP14], and
also have been used extensively in the analysis of rounding schemes in approximation algorithms
(see e.g. [Sri99; CVZ10]). For such distributions, all off-diagonal entries of the influence matrix
Ψµ are nonpositive, and so

λmax (Ψµ) ≤ ∥Ψµ∥ℓ∞→ℓ∞
= 1 +max

i

∑
j ̸=i

|Ψµ(i→ j)|

= 1 +max
i

∣∣∣∣∣∣
∑
j ̸=i

Pr
µ
[j ∈ S | i ∈ S]−

∑
j ̸=i

Pr
µ
[j ∈ S | i /∈ S]

∣∣∣∣∣∣ (Negative Correlation)

= 1 +max
i

∣∣∣∣∣Eµ [|S| − 1 | i ∈ S]︸ ︷︷ ︸
=k−1

− Eµ [|S| | i /∈ S]︸ ︷︷ ︸
=k

∣∣∣∣∣ (Linearity of Expectation)

= 2. (Homogeneity)

Hence, such µ are 1-spectrally independent.
Our goal is to prove that spectral independence implies fast mixing of Glauber dynamics.

Theorem 1.2 (Spectral Independence =⇒ Poincaré (Informal); [AL20; ALO21]). Let µ be a
probability measure on {±1}n. Suppose there exists η ≥ 0 such that for every S ⊆ [n] and every
pinning τ : S → {±1}, the conditional distribution µτ is η-spectrally independent. Then Glauber
dynamics for µ has spectral gap Ω

(
n−(1+η)

)
and mixing time O

(
n2+η

)
.

Remark 1. Technically, this statement is incorrect when η > 1, but there are straightforward ways
to fix it. We chose to state it this way to keep it as simple as possible. See Remark 4 for further
discussion.
Remark 2. This result was first proved in the context of the recently emerging study of high-
dimensional expanders, where the goal is to extend the fruitful study of expander graphs to simpli-
cial complexes/hypergraphs. It turns out, one can view µ as being a weighted simplicial complex
such that its down-up walk is exactly Glauber dynamics. Local-to-global mixing theorems of this
flavor were first established in a sequence of works [DK17; KM17; KO20].

If we make additional structural assumptions on the input distribution µ, we can do much
better.

Theorem 1.3 (Optimal Mixing for Sparse Graphical Models; [CLV21]). Let µ be a probability
measure on {±1}n. Suppose µ satisfies the following properties:

(i) Spectral Independence: There exists η ≤ O(1) such that for every S ⊆ [n] and every
pinning τ : S → {±1}, the conditional distribution µτ is η-spectrally independent.

(ii) Conditional Independence: There exists a graph G = (V,E) on vertex set V = [n] of
maximum degree ∆ such that µ is globally Markov w.r.t. G:
For every partition A ⊔ S ⊔ B such that every path from a vertex in A to a vertex in B
goes through a vertex in the separator S, and every pinning τ : S → {±1}, the conditional
measure µτ factorizes as µτ

A ⊗ µτ
B. In other words, σA is independent from σB given σS.

Then Glauber dynamics has spectral gap γ(PGD) ≥ 1/Cn for some constant C = C(η,∆) > 0.
Furthermore, if in addition µ satisfies:

(iii) B-Marginal Boundedness: Suppose there exists a constant 0 < B ≤ 1/2 such that for
every S ⊆ [n], every pinning τ : S → {±1}, and every i ∈ [n] \S, we have µτ

i (+1), µτ
i (−1) ≥

B.

Then Glauber dynamics has standard and modified log-Sobolev constants ϱ(PGD), κ(PGD) ≥ 1/Cn
for some constant C = C(η,∆,B) > 0, and mixing time O(n log n).

We emphasize again that all of these results extend to arbitrary discrete product spaces (e.g.
[q]n). For the purposes of this lecture, we only prove the stated spectral gap results. We defer the
proof of O(n log n) mixing to the next lecture, where we discuss entropic independence.
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2 The High-Level Approach: Tensorization
Let us first consider how one would establish the Poincaré inequality for the simplest “ideal” setting:
the uniform measure over {±1}n. There are many methods for doing this (e.g. Fourier analysis),
but we focus on an inductive approach called tensorization: We first prove the desired statement
in dimension 1, and then use independence of the coordinates to reduce the n-dimensional case to
the 1-dimensional case via some sort of “decomposition”. This is sometimes called the martingale
method in the mathematical physics community, see e.g. [LY98].

To streamline the presentation, we only state the following variance inequality for product
measures, which is enough for our purposes.

Lemma 2.1 (Variance Factorization from Perfect Independence). Let µ, ν be probability measures
on finite state spaces Ω,Σ respectively, and let µ ⊗ ν denote the product measure on Ω × Σ given
by (µ ⊗ ν)(x, y)

def
= µ(x) · ν(y). For f : Ω × Σ → R and ω ∈ Ω (resp. σ ∈ Σ), let fω : Σ → R

(resp. fσ : Ω→ R) be the specialization fω(·) = f(ω, ·) (resp. fσ(·) = f(·, σ)). Then the following
factorization inequality holds:

Varµ⊗ν(f) ≤ Eσ∼ν [Varµ (f
σ)] + Eω∼µ[Varν (f

ω)], ∀f : Ω× Σ→ R. (2)

One key component in the proof of this inequality is the following decomposition of variance,
which we will need throughout this lecture.

Lemma 2.2 (Law of Total Variance). Let ξ be a probability measure on a product space Ω × Σ
with marginals µ, ν on Ω,Σ, respectively. Then for every function f : Ω× Σ→ R,

Varξ (f) = Eω∼µ [Varξω (fω)] + xVarµ (fµ) , (3)

where fµ : Ω → R is the marginalization fµ(ω)
def
= Eσ∼ξω [f(ω, σ)]. The same holds with the roles

of µ, ν reversed.

The proof of Lemma 2.2 is a straightforward calculation. Proving Lemma 2.1 using Lemma 2.2
is a standard exercise in convexity. Lemmas 2.1 and 2.2 both hold if we replace all occurrences
of Var(·) with Ent(·), with the former being a special case of Shearer’s Inequalities in information
theory; see e.g. [CMT15] and references therein. These inequalities are well-known in the literature,
and are sometimes called tensorization of variance/entropy for product measures (see e.g. [Led99;
Ces01; GZ03; CMT15]). They can simultaneously be somewhat generalized to some restricted
classes of Φ-entropies [Cha04] via variational principles.

3 Poincaré Inequality via Spectral Independence
Our goal is now to generalize the tensorization approach outlined in Section 2. The essence of
this approach is to decompose the variance using Lemma 2.2. The key connection with spectral
independence is the following weak “one-step version” of factorization of variance.

Lemma 3.1. Let µ be a probability measure on {±1}n, and suppose µ itself is η-spectrally inde-
pendent. Then for every function f : {±1}n → R,(

1− 1 + η

n

)
·Varµ (f) ≤ Ei∼[n]

[
Es∼µi

[
Varµi←s (f)

]]
, (4)

or equivalently,

Varµ1
(f1) ≤

1 + η

n
·Varµ (f) , (5)

where µ1, f1 are supported on [n] × {±1}, and given by marginalization: µ1(i, s) = 1
n Prµ[i ← s]

and f1(i, s) = Eσ∼µi←s [f ] for all (i, s) ∈ [n]× {±1}.

We first use it to complete the proof of rapid mixing via spectral independence.
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Proof of Theorem 1.2. We repeatedly apply Eq. (4) from Lemma 3.1 to obtain

Varµ (f) ≤
(
1− 1 + η

n

)−1
· Ei∼[n]

[
Es∼µi

[
Varµi←s (f)

]]
(η-spectral independence of µ)

≤
(
1− 1 + η

n

)−1 (
1− 1 + η

n− 1

)−1
· E{i,j}∼([n]

2 )
[
Eτ∼µij [Varµτ (f)]

]
(η-spectral independence of each µi←s)

≤ · · · (Induction)

≤
k−1∏
j=0

(
1− 1 + η

n− j

)−1
· E

S∼([n]
k )

[Eτ∼µS
[Varµτ (f)]]

≲ exp

(1 + η)

k−1∑
j=0

1

n− j

 · E
S∼([n]

k )
[Eτ∼µS

[Varµτ (f)]]

≲

(
n

n− k

)1+η

· E
S∼([n]

k )
[Eτ∼µS

[Varµτ (f)]] ,

for any 0 ≤ k ≤ n−1. In particular, setting k = n−1 and observing that E
S∼([n]

k )
[Eτ∼µS

[Varµτ (f)]] =

EGD(f, f) yields the claim.

Remark 3. Ultimately, what we have established here is that

Varµ (f) ≲ n1+η · Ei∼[n]
[
Eτ∼µ−i

[Varµτ (f)]
]

∀f : {±1}n → R.

This is sometimes called approximate tensorization of variance [Ces01; CMT15], since by Lemma 2.1,
perfect tensorization of variance when µ is a product measure exactly says that

Varµ (f) ≤ n · Ei∼[n]
[
Eτ∼µ−i

[Varµτ (f)]
]

∀f : {±1}n → R.

Remark 4. Technically, these inequalities are no longer correct if η > 1 since 1 − 1+η
n−k < 0 for

k = n− 1. The fully precise version is to let

ηk = max
S∈([n]

k )
max

τ :S→{±1}
λmax (Ψµτ ) ,

which is always at most n − k. Then for most distributions of interest, we will actually have two
bounds ηk ≤ min {η, C · (n− k)} for some universal constants η ≤ O(1) and 0 < C < 1. The
second bound C · (n− k) just makes everything work when k = n−O(1), and will typically follow
just from simple connectivity considerations. The real heart of the matter is showing that there
exists η ≤ O(1) such that ηk ≤ η for all k.

Proof of Lemma 3.1. That the two claimed displays Eqs. (4) and (5) are equivalent follows imme-
diately from a straightforward generalization of Lemma 2.2, which says that

Varµ (f) = Varµ1 (f1) + Ei∼[n]
s∼µi

[
Varµi←s (f)

]
. (6)

Note that the expectation in the right-hand side is precisely the expectation under (i, s) ∼ µ1.
So, we prove the second inequality. To see the appearance of the influence matrix, we interpret
Varµ1 (f1) as the quadratic form of a some correlation matrix (appropriately scaled), and interpret
Varµ (f) as essentially ≈ ∥f∥2µ. This makes the ratio Varµ1 (f1)

Varµ(f)
into a Rayleigh quotient, for which

we can apply the variational characterization of eigenvalues along with η-spectral independence.
Let us now formalize these calculations.

Viewing f and {µi←s}i∈[n],s∈{±1} as 2n-dimensional vectors indexed by elements of {±1}n, we
may express Varµ1

(f1) linear algebraically as

Varµ1
(f1) = f⊤

 1

n

∑
i∈[n]

s∈{±1}

µi(s) ·
(
µi←s

) (
µi←s

)⊤
 f −

〈
Ei∼[n]
s∼µi

[
µi←s

]
, f

〉2

= ⟨f, Pµf⟩µ − ⟨f,1⟩2µ
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where

Pµ =
1

n

∑
i∈[n]

s∈{±1}

1

µi(s)
·
(
1i←s

) (
1i←s

)⊤
diag(µ).

Similarly, Varµ (f) = ⟨f, f⟩µ − ⟨f,1⟩2µ, and so

sup
f

Varµ1
(f1)

Varµ (f)
= sup

f⊥µ1

⟨f, Pµf⟩µ
⟨f, f⟩µ

= λ2(Pµ) = λ2(Mµ),

where Mµ = diag(µ)1/2Pµ diag(µ)
−1/2 is the “symmetrized version” of the random walk matrix Pµ;

note that Mµ has the same eigenvalues as Pµ. Now, even though Mµ is a huge 2n×2n matrix, it has
extremely low rank, since it can be factorized as Mµ = 1

nUµU
⊤
µ where Uµ ∈ R2n×2n has columns

µi(s)
−1/2 diag(µ)1/21i←s for each i ∈ [n], s ∈ {±1}. In particular, Mµ has the same eigenvalues as

1
nU
⊤
µ Uµ ∈ R2n×2n (up to multiplicity of the zero eigenvalue), whose entries are given by(

1

n
U⊤µ Uµ

)
((i, s), (j, t))

def
=

1

n

〈
1i←s,1j←t

〉
µ√

µi(s) · µj(t)
=

1

n

Prσ∼µ [σ(i) = s, σ(j) = t]√
Prσ∼µ[σ(i) = s] · Prσ∼µ[σ(j) = t]

This is again a symmetrized version of a random walk matrix Qµ ∈ R2n×2n whose entries are given
by

Qµ ((i, s), (j, t))
def
=

1

n
Pr
σ∼µ

[σ(j) = t | σ(i) = s].

To sum up our analysis thus far, we have proved that supf
Varµ1 (f1)

Varµ(f)
= λ2(Qµ). Hence, all that

remains is to show that λ2(Qµ) =
λmax(Ψµ)

n , which is by assumption at most 1+η
n .

Note that Qµ is a Markov chain on [n]× {±1} with stationary measure µ1. It follows that

λ2(Qµ) =
1

n
· λmax (Iµ)

where Iµ((i, s), (j, t)) = Pr
σ∼µ

[σ(j) = t | σ(i) = s]− Pr
σ∼µ

[σ(j) = t].

The matrix Iµ already looks very similar to Ψµ. In particular, a quick calculation reveals that Iµ
can be expressed as a block matrix

Iµ − Id =

[
Aµ −Aµ

Bµ −Bµ

]
where Aµ, Bµ ∈ Rn×n are such that Aµ − Bµ = Ψµ − Id. It follows immediately that Iµ − Id has
the same spectrum as Ψµ − Id up to multiplicity of the zero eigenvalue, and so we’re done.

4 Optimal Spectral Gap for Sparse Graphical Models
We now sharpen our previous analysis in the setting of graphical models on bounded-degree graphs.
For simplicity, we will prove a Ωη,∆(1/n) lower bound on the spectral gap of Glauber dynamics
without assuming marginal boundedness. This implies O(n2)-mixing. We then give the full proof
of O(n log n) mixing in the next lecture.

In the proof of Theorem 1.2, we saw that for every 0 ≤ k ≤ n− 1,

Varµ (f) ≤
(

n

n− k

)1+η

· E
S∼([n]

k )
[Eτ∼µS

[Varµτ (f)]] . (7)

If we instead took k = (1 − θ)n for some constant 0 < θ < 1, then we’d have θ−(1+η) = O(1).
In particular, all of the loss comes from applying spectral independence after having pinned the
assignments to linearly many coordinates. Hence, want to find a way to factorize the variance more
efficiently in this regime. This is where conditional independence and sparsity come into play. If
we pin as many as k = θn many random vertices S ∈

(
[n]
k

)
, then the underlying graph G = (V,E)
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should shatter into many small connected components, between which there is pure independence.
In particular, we will see that for most S ∈

(
[n]
k

)
, we can apply Lemma 2.1 to break Varµτ (f) into

variances w.r.t. distributions on only O(log n) many vertices, even though in aggregate there are
(1− θ)n total unpinned vertices. This shattering effect is crucial, and is formalized as follows; its
proof is provided in Appendix A.

Lemma 4.1 (Shattering Lemma for Sparse Graphs). Let G = (V,E) be an n-vertex graph of
maximum degree ≤ ∆. Then for every positive integer ℓ > 0,

Pr
S
[|Sv| = ℓ] ≤ (2e∆θ)ℓ−1,

where S is a uniformly random subset of V of size ⌈θn⌉, and Sv is the unique maximal connected
component of G[S] containing v.

Proof of Optimal Poincaré in Theorem 1.3. Letting k = (1 − θ)n for a parameter 0 ≤ θ ≤ 1, we
then have

Varµ(f) ≤ θ−(1+η) · E
S∼([n]

k )
[
Eτ∼µV \S [Varµτ (f)]

]
(Spectral Independence; see the proof of Theorem 1.2)

≤ θ−(1+η) · E
S∼([n]

k )

Eτ∼µV \S

 ∑
component U

in G[V \S]

Varµτ
U
(f)




(Conditional Independence, i.e. Lemma 2.1)

≤ θ−(1+η) · E
S∼([n]

k )

Eτ∼µV \S

 ∑
v∈V \S

CPI(|Sv|) · Eσ∼µτ
V−v

[
Varµτ⊔σ

v
(f)

]
(Worst Poincaré Constant CPI(ℓ) over conditionals on ℓ coordinates)

= θ−(1+η) ·
∑
v∈V

Eτ∼µ−v

[
Varµτ

v
(f)

]
· E

S∼([n]
k )

[CPI(|Sv|)] (Rearranging)

≤ θ−(1+η)n · Ev∼V
[
Eτ∼µ−v

[
Varµτ

v
(f)

]]
·
∞∑
k=1

(2e∆θ)ℓ−1CPI(ℓ) (Shattering, Lemma 4.1)

≤ Oη,∆(n) · Ei∼[n]
[
Eτ∼µ−i [Varµτ (f)]

]
.

To justify the final line, we choose θ ≤ O(1/∆) so that θ−(1+η) = ∆O(1+η) which is constant.
Furthermore, (2e∆θ)ℓ−1 is decaying exponentially fast in ℓ, so to ensure

∑∞
k=1(2e∆θ)ℓ−1CPI(ℓ) ≤

O(1), we can even afford an exponentially growing upper bound on the Poincaré constant CPI(ℓ)
for the conditional measures of µ on ℓ coordinates. This permits essentially trivial bounds on the
Poincaré constant which one can obtain using e.g. marginal boundedness and the fact that our
Markov chain walks on a state space of size 2ℓ; one could also just use Theorem 1.2.

5 Beyond Binary Alphabets
Recall that a discrete product space is a finite domain Ω of the form

∏n
i=1 Σi for some finite

sets/alphabets Σ1, . . . ,Σn. One can define a generalized influence matrix Iµ indexed by coordinate-
assignment pairs {(i, s) : i ∈ [n], s ∈ Σi} by

Iµ ((i, s), (j, t))
def
= Pr

σ∼µ
[σ(j) = t | σ(i) = s]− Pr

σ∼µ
[σ(j) = t] ,

just as we did in the proof of Lemma 3.1. This doesn’t quite give the same matrix as Ψµ in the
binary setting, but it essentially has the same spectrum. So, we can again use λmax (Iµ) ≤ 1+η as
our definition of spectral independence [ALO21; Che+21]. It also again admits a nice interpretation
as an appropriate normalization of a covariance matrix (where instead we use {0, 1}-indicator
vectors of coordinate-assignment pairs). In some contexts, it can be convenient to use the following
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alternative version Ĩµ ∈ Rn×n
≥0 given by

Ĩµ(i→ j)
def
= max

s,t∈Σi

∥∥µi←s
j − µi←t

j

∥∥
TV

.

This latter version was first proposed in [Fen+21]; note we always have λmax (Iµ) ≤ ρ
(
Ĩµ

)
.
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A Unfinished Proofs
Proof of Fact 1.1. We have

Covµ(σi, σj) = Eµ[σiσj ]− Eµ[σi] · Eµ[σj ]

= 4

(
Pr
µ
[σ(i) = σ(j) = +1]− Pr

µ
[σ(i) = +1] · Pr

µ
[σ(j) = +1]

)
.

Hence,

(
D−1µ Cov(µ)

)
(i, j) =

Prµ[σ(i) = σ(j) = +1]− Prµ[σ(i) = +1] · Prµ[σ(j) = +1]

Prµ[σ(i) = +1] · Prµ[σ(i) = −1]

=
Prµ[σ(j) = +1 | σ(i) = +1]− Prµ[σ(j) = +1]

Prµ[σ(i) = −1]
= Ψµ(i→ j).

The claim follows immediately.

Proof of Lemma 4.1. We use the counting lemma of Borgs–Chayes–Kahn–Lovász [Bor+13], which
recall says that in a graph of maximum degree ≤ ∆, for every vertex v ∈ V and ℓ ∈ N, the number
of connected induced subgraphs containing v with ℓ vertices is at most (e∆)ℓ−1. We saw this
previously in the context of the cluster expansion. From this, if we write k = ⌈θn⌉ for convenience,
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then we obtain

Pr
S
[|Sv| = ℓ] ≤

∑
U⊆V

U∋v,|U |=ℓ
G[U ] connected

Pr
S
[U ⊆ S] (Union Bound)

≤ #{U ⊆ V : U ∋ v : |U | = ℓ,G[U ] connected} ·
(
n−ℓ
k−ℓ

)(
n
k

) ([Bor+13])

≤ (e∆)ℓ−1 · (n− ℓ)!

n!
· k!

(k − ℓ)!

≤ k

n
· (e∆)ℓ−1 ·

(
k − 1

n− 1

)ℓ−1

≤ (2e∆θ)ℓ−1, (Using k = ⌈θn⌉)

as desired.

9


	Fast Mixing via Spectral Independence
	The High-Level Approach: Tensorization
	Poincaré Inequality via Spectral Independence
	Optimal Spectral Gap for Sparse Graphical Models
	Beyond Binary Alphabets
	Unfinished Proofs

