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In the next few lectures, we return to the study of Markov chain Monte Carlo methods. Our
goal will be to unify all of the methods we have seen thus far in the following sense: Exponential
decay of correlations or the absence of zeros of the partition function both imply local Markov
chains like Glauber dynamics mix in nearly-linear time. Our aim in this lecture is to build some
of the foundational tools required for this endeavor.

1 Mixing Time Bounds via Functional Analysis
Let µ be a probability distribution on some state space Ω, and let P be a Markov chain on Ω which
is reversible w.r.t. µ. Our goal is to study the total variation mixing time of P, which controls how
efficient it is to use P as a sampler. Previously, we saw two types of tools for bounding Tmix(ϵ):
(path) coupling, and Poincaré Inequalities/spectral gap. Both of these are instantiations of a much
more general strategy.

Theme 1.1. Show that some other measure of “distance” between probability measures D(· ∥ ·)
contracts under every application of P. In other words, for some 0 < α < 1 which is not too small,
we have

D(νP ∥µ) ≤ (1− α) · D(ν ∥µ), ∀ probability measures ν on Ω. (1)

Fact 1.2. If Eq. (1) holds for some D(· ∥ ·) such that D(ν ∥µ) ≤ ϵ implies ∥µ− ν∥TV ≤ O(ϵc) for
some c > 0, then

Tmix(ϵ) ≤ O

(
1

α
log

(
maxx∈Ω D(δx ∥µ)

ϵ

))
We do not require D(· ∥ ·) to be symmetric (e.g. KL-divergence) so it is not a metric in

a formal sense. For the most part, we just need nonnegativity and that D(ν ∥µ) = 0 implies
µ = ν. Depending on what D(· ∥ ·) is, Eq. (1) is often called a Strong Data Processing Inequality
in information theory contexts, since for many natural notions of “distance” D(· ∥ ·), we have the
standard Data Processing Inequality D(νP ∥µ) ≤ D(ν ∥µ). Of course, if D(· ∥ ·) is total variation
distance itself, then we immediately get rapid mixing. Notably, the total variation distance between
two distributions is always at most 1 so maxx∈Ω D(δx ∥µ) ≤ 1 in this case. However, TV-distance
isn’t very easy to work with in general, and it very well could decay in a highly irregular manner.
So, we typically pick a nicer “smoother” D(· ∥ ·) such that Eq. (1) holds and we make quantifiable
progress in every single step. Here are two examples which we have already seen.
Example 1 (Bubley–Dyer Path Coupling). If we endow Ω with the structure of an undirected graph
(Ω, E), then we can take D(ν ∥µ) to be the Wasserstein distance (or transportation distance)

W1(µ, ν)
def
= inf

ξ
E(x,y)∼ξ[dist(x, y)], (2)

w.r.t. the shortest path metric dist(x, y) in (Ω, E), where the infimum is over all couplings ξ of µ, ν.
By composing couplings along shortest paths, to show W1(µP, νP) ≤ (1−α) ·W1(µ, ν), it suffices to
prove that for every pair of neighboring states (x, y) ∈ E ⊆

(
Ω
2

)
, we have W1(δxP, δyP) ≤ 1−α. This

dramatically simplifies the task of proving mixing time upper bounds. In this context, the number
α is sometimes called the coarse Ricci curvature (or Ollivier–Ricci curvature) of the measure metric
space (Ω, E,P) [Oll09]. We also have the trivial bound maxx∈Ω W (δx ∥µ) ≤ diam(Ω, E). Note that
since dist(·, ·) takes values in N, we always have W1(µ, ν) ≥ ∥µ− ν∥TV. Furthermore, if we took
E =

(
Ω
2

)
so that dist(·, ·) becomes the discrete metric, then W1 is exactly TV-distance. However, if

Ω has product structure for instance, we can do much better by using Hamming distance.
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Example 2 (Poincaré Inequality). If we take D(ν ∥µ) to be χ2(ν ∥µ) = Varµ

(
dν
dµ

)
, then contraction

Eq. (1) follows from the Poincaré Inequality

γ ·Varµ(f) ≤ EP(f, f), ∀f : Ω → R,

where recall

EP(f, f) = ⟨f, (Id− P)f⟩µ =
1

2

∑
x,y∈Ω

µ(x)P(x → y) · (f(x)− f(y))2

is the Dirichlet form of P. The best choice of γ is the (absolute) spectral gap of P. Combining this
with the comparison ∥µ− ν∥2TV ≤ 1

4χ
2(ν ∥µ) implies rapid mixing assuming a Poincaré Inequality

holds with a good γ. We saw earlier how to bound the Poincaré constant γ using the conductance
method and canonical paths/flows.

1.1 (Modified) Logarithmic Sobolev Inequalities
Path coupling (see Example 1) is very useful in practice, and in many settings (e.g. graph colorings
and the ferromagnetic Ising model) gives optimal nearly-linear mixing time. However, there are
natural rapidly mixing Markov chains on non-contrived state spaces for which no such argument
can certify this rapid mixing [KR01]. The spectral gap (see Example 2) in a concrete sense fully
“characterizes” the mixing time up to polynomial factors. However, in many settings of interest
(e.g. Gibbs distributions), even if one were to obtain the best possible bound on γ, it would still
give an extraneous factor of n due to the initial distance maxx∈Ω χ2(δx ∥µ) = 1

µmin
, which is often

exponentially large in n. So at the very best, we’d get a suboptimal O(n2)-mixing, without even
accounting for possible additional losses in bounding γ.

To remedy this situation, we turn to the KL-divergence (or relative entropy).

DKL(ν ∥µ)
def
=

∑
x∈Ω

ν(x) log
ν(x)

µ(x)
. (3)

More generally, for a nonnegative function f : Ω → R≥0, define

Entµ(f)
def
= Eµ[f log f ]− Eµ[f ] logEµ[f ]. (4)

One could also consider the Φ-divergences/Φ-entropies given by EntΦµ (f)
def
= Ex∼µ [Φ(f(x))] −

Φ (Ex∼µ[f(x)]) for convex Φ; see [Cha04] and references therein. We will not do so here, although
we mention that many of the techniques we will see later on also apply to these types of “distances”.

Note that DKL(ν ∥µ) = Entµ

(
dν
dµ

)
. Moreover, maxx∈Ω DKL(δx ∥µ) = log 1

µmin
, which is an

exponential improvement over what we get using χ2(ν ∥µ). We now study the decay of DKL(ν ∥µ)
w.r.t. P, which is captured by the following functional analytic quantities.

Definition 1 (Standard/Modified Log-Sobolev Inequalities). Let P be a Markov chain which is
reversible w.r.t. a distribution µ on a domain Ω. We say P satisfies a (standard) log-Sobolev
inequality with constant κ if

κ · Entµ(f) ≤ EP
(√

f,
√
f
)
, ∀f : Ω → R≥0. (5)

We say P satisfies a modified log-Sobolev inequality with constant ϱ if

ϱ · Entµ(f) ≤ EP(f, log f), ∀f : Ω → R≥0. (6)

We define the standard/modified log-Sobolev constants κ(P), ϱ(P) of P to be the best possible
constants in Eqs. (5) and (6), respectively.

Remark 1. Unlike its modified counterpart, it was previously observed e.g. in [HS20] that κ(P) is
sensitive to µmin. In particular,

κ(P) ≤ min
x∈supp(µ)

EP
(√

Ix,
√
Ix
)

Entµ (Ix)
= min

x∈supp(µ)

µ(x) · (1− P(x → x))

µ(x) log 1
µ(x)

≤ 1

log 1
µmin

.
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While this isn’t necessarily an issue for spin systems on bounded-degree graphs, there are many
other applications (e.g. determinantal point processes) where we can have κ(P) ≪ ϱ(P). We
mention here a beautiful recent result of Salez–Tikhomirov–Youssef [STY23] on reverse inequalities
between ϱ(P) and κ(P).

The standard version was first proposed by Gross [Gro75] in the continuous space, where the
two versions are equivalent as observed by [ELL17]; see [Led99; GZ03; MT06] for more compre-
hensive material on these constants and inequalities. The term “modified” is a bit overloaded,
especially in continuous settings, but we use it following Bobkov–Tetali [BT03]. It is well-known
that the standard log-Sobolev inequality is equivalent to hypercontractivity of the associated heat
semigroup Eq. (8) [DS96], which is a fundamental tool e.g. in the Fourier analysis of Boolean
functions [ODo14]. On the other hand, the modified version tends to be more useful in mixing
time applications because κ(P) is sensitive to µmin; see Remark 1. Like the spectral gap, lower
bounds on these constants yield upper bounds on the mixing time.

Theorem 1.3 ((Modified) Log-Sobolev Implies Rapid Mixing). Let P be a reversible ergodic
Markov chain with stationary distribution µ on a domain Ω. Then for every ϵ > 0,

Tmix(ϵ) ≤
1

ϱ(P)

(
log log

1

µmin
+ log

1

2ϵ2

)
[BT03]

Tmix(ϵ) ≤
1

4κ(P)

(
log log

1

µmin
+ log

1

2ϵ2

)
[DS96]

where recall that µmin = minx∈Ω:µ(x)>0 µ(x).

Besides mixing, these constants turn out to also have incredibly useful consequences for con-
centration of measure phenomena.

Theorem 1.4 ((Modified) Log-Sobolev Implies Concentration; see e.g. [Goe04; Sam05; BLM16]).
Let P be a reversible ergodic Markov chain with stationary distribution µ on a domain Ω. Fix an
arbitrary function f : Ω → R, and define the maximum one-step variance of f by

v(f)
def
= max

x∈Ω

∑
y∈Ω

P(x → y) · (f(x)− f(y))2

 . (7)

Then for every t ≥ 0, we have the following sub-Gaussian concentration inequalities

Pr
x∼µ

[f(x) ≥ Eµ[f ] + ϵ] ≤ exp

(
−ϱ(P)ϵ2

2v(f)

)
Pr
x∼µ

[f(x) ≥ Eµ[f ] + ϵ] ≤ exp

(
−2κ(P)ϵ2

v(f)

)
.

Here, v(f) quantifies how Lipschitz f is w.r.t. the underlying graph induced by P on Ω. In
particular, if f is 1-Lipschitz in the sense that |f(x)− f(y)| ≤ 1 for all x, y such that P(x → y) > 0,
then v(f) ≤ 1.

Finally, we have the following comparison inequalities between γ(P), ϱ(P), κ(P), which says that
lower bounding the spectral gap is easier than lower bounding the standard/modified log-Sobolev
constants.

Proposition 1.5 ([BT03]). For every reversible Markov chain P, 4κ(P) ≤ ϱ(P) ≤ 2γ(P).

Remark 2. These constants really can behave very differently (see e.g. Remark 1) even for very
simple and natural Markov chains, so it isn’t obvious at all that working with ϱ(P), κ(P) would
actually result in better mixing times compared to using γ(P). However, we will see that in the
context of spin systems on bounded-degree graphs, they are often all of the same order (at least
in the regime where polynomial-time algorithms exist).

Historically, the standard and modified log-Sobolev constants are notoriously difficult to lower
bound, especially in the absence of product structure or special symmetries [DS81; DS87; DS96;
Sca97; LY98; DH02; ST10; FOW22]. In the next few lectures, we’ll see new techniques for bounding
these quantities based on quantitative correlation inequalities, which can then be established via
techniques we’ve already seen. Proofs of Theorem 1.4 and Proposition 1.5 are provided in Section 2
and Appendix A, respectively. We now turn to a proof (sketch) of Theorem 1.3, which will also
explain where the Dirichlet forms EP

(√
f,

√
f
)

and EP (f, log f) come from.
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1.2 The Heat Semigroup
It will be convenient to evolve P in continuous time. This is a standard tool which allows us to do
differential calculus. For this part, we follow the presentation in [LPW17]. Let {tk}∞k=1 ⊆ R≥0 be
a sequence of i.i.d. mean 1 exponential random variables, i.e. Pr[tk ≥ t] = exp(−t) for all t ∈ R≥0

and all k ∈ N. Think of these as time increments. We now define a continuous-time stochastic
process t 7→ Yt ∈ Ω, which depends on {tk}∞k=1, as follows:

• We sample Y0 according to some initial distribution ν.

• At transition time Tk =
∑k

i=1 ti, we take a single discrete step according to P. At all other
times, Yt stays constant.

To make this formal, let (Xk)
∞
k=0 be the discrete-time Markov chain described by P, where X0 ∼ ν,

and let {tk}∞k=1
i.i.d.∼ Exp(1) be completely independent of (Xk)

∞
k=0. Then for every k ∈ N, let

Yt = Xk for all t ∈ [Tk, Tk+1).
Let us now study the distribution of Yt. If we define the random variable Nt = max{k ∈ N :

Tk ≤ Nt} which counts the number of transitions up to time t for every t ∈ R≥0, then

Yt ∼ ν

∞∑
k=0

Pr[Nt = k] · Pk.

Lemma 1.6. For every t ∈ R≥0, Nt distributed as a Poisson random variable with mean t.

A proof is provided in Appendix B. This tells us that

∞∑
k=0

Pr[Nt = k] · Pk =

∞∑
k=0

e−ttk

k!
· Pk

= e−t
∞∑
k=0

(tP)k

k!

= exp (−t · (Id− P))
def
= Ht.

(8)

This is the heat semigroup (or heat kernel) of P. It itself is a reversible Markov chain with stationary
measure µ. Instead of proving Theorem 1.3, we will prove the following which is sufficient for our
purposes.

Theorem 1.7 ([DS96; BT03]). For every t ∈ R≥0 and every initial distribution ν,

DKL(νHt ∥µ) ≤ e−ϱ(P)·t · DKL(ν ∥µ).

The same inequality holds if we replace ϱ(P) with 4κ(P).

Theorem 1.7 essentially implies Theorem 1.3 except one has to convert continuous-time mixing
to discrete-time mixing. The intuition here is that because Nt is Poisson with mean t, we expect
via concentration for Poisson random variables that Ht ≈ Pt. In particular, PC·t for a large enough
constant C > 1 “should mix better” than Ht. One slight subtlety here is that Ht is automatically
aperiodic and in fact, all of its eigenvalues are nonnegative, even if P has nontrivial periodicity. So,
this approximation Ht ≈ Pt can’t actually hold for arbitrary reversible chains P. For more details
on the translation between continuous-time and discrete-time mixing, see [LPW17].

Proof of Theorem 1.7. For convenience, define ft =
d(νHt)

dµ so that DKL(νHt ∥µ) = Entµ(ft). Note
that since νHt is a probability distribution, Eµ[ft] = 1 for all t ∈ R≥0. Differentiating w.r.t. time,
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we see that

d

dt
Entµ(ft) =

∑
x∈Ω

µ(x) · d

dt
(Htf0)(x) log(Htf0)(x) (Using d(νHt)

dµ = Ht
dν
dµ and Eµ[ft] = 1)

= −
∑
x∈Ω

µ(x) · ((Id− P)Htf0) (x) · log (Htf0) (x)−
∑
x∈Ω

µ(x) · ((Id− P)f0) (x)︸ ︷︷ ︸
=Eµ[f0]−Eµ[Pf0]=1−1=0

= −
∑
x∈Ω

µ(x) · ((Id− P) ft) (x) · log ft(x) (Using ft = Htf0)

= −⟨(Id− P) ft, log ft⟩µ
= −EP(ft, log ft). (Definition of Dirichlet form)

(One easy way to see the second step is by differentiating (Htf0) (x) = e−t
∑∞

k=0
tk

k! ·
(
Pkf0

)
(x)

term-by-term.) Hence, if we have a modified log-Sobolev inequality with constant ϱ = ϱ(P), then

d

dt
Entµ(ft) ≤ −ϱ · Entµ(ft).

This is great for us because rearranging yields a constant bound on the logarithmic derivative

d

dt
log Entµ(ft) =

d
dt Entµ(ft)

Entµ(ft)
≤ −ϱ.

Integrating from 0 to t, we obtain

log Entµ(ft)− log Entµ(f0) ≤ −ϱ · t.

Rearranging again yields the desired inequality. We can also replace ϱ(P) with 4κ(P) by Proposi-
tion 1.5.

Remark 3. A similar calculation reveals that

d

dt
Varµ (ft) = −2 · EP(ft, ft),

which implies that χ2(νHt ∥µ) ≤ e−γ(P)·t · χ2(ν ∥µ). This is essentially the statement that having
a Poincaré Inequality/spectral gap implies fast mixing, except from the continuous-time lens.

2 Concentration via Functional Inequalities
As in most proofs of Chernoff-type concentration inequalities, to prove Theorem 1.4, we need a
strong bound on the moment generating function Eµ

[
etf

]
.

Proposition 2.1. Let P be a reversible Markov chain on Ω with stationary measure µ. Then for
every t ≥ 0, we have the differential inequality

d

dt

[
logEµ

[
etf

]
t

]
≤ v(f)

2ϱ(P)
, (9)

which in particular, implies the bound

Eµ

[
etf

]
≤ exp

(
t · Eµ[f ] + t2 · v(f)

2ϱ(P)

)
. (10)

That Proposition 2.1 (more specifically, Eq. (10)) implies Theorem 1.4 is standard, and a proof
is provided in Appendix B. We prove Proposition 2.1 via the famous Herbst argument. Really,
the key inequality here is Eq. (9), which is why we decided to include it in the statement of
Proposition 2.1.
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Proof of Proposition 2.1. Let us first argue that Eq. (9) indeed implies Eq. (10). To see this,
observe that by integrating Eq. (9) from 0 to t, we obtain

logEµ

[
etf

]
t

− lim
s→0

{
logEµ

[
esf

]
s

}
≤ v(f)

2ϱ(P)
· t.

Noting that the limit in the left-hand side evaluates to Eµ[f ] by L’Hôpital’s Rule, and so rearranging
immediately gives Eq. (10). Hence, all that remains is to establish Eq. (9) by leveraging the modified
log-Sobolev inequality. By explicit calculation, we have

d

dt

[
logEµ

[
etf

]
t

]
=

Eµ

[
f · etf

]
t · Eµ [etf ]

−
logEµ

[
etf

]
t2

=
Entµ

(
etf

)
t2 · Eµ [etf ]

≤
EP

(
tf, etf

)
ϱ(P) · t2 · Eµ [etf ]

. (Definition of ϱ(P))

Hence, Eq. (9) is equivalent to

2

t
EP

(
tf, etf

)
≤ t · v(f) · Eµ

[
etf

]
.

Expanding the definition of the Dirichlet form,

2

t
EP

(
tf, etf

)
=

∑
x,y∈Ω

µ(x)P(x → y) · (f(x)− f(y)) ·
(
etf(x) − etf(y)

)
=

∑
x,y∈Ω

µ(x)P(x → y) · (f(x)− f(y))
2 ·

(
etf(x) − etf(y)

f(x)− f(y)

)

=
∑
x∈Ω

µ(x) ·

∑
y∈Ω

P(x → y) · (f(x)− f(y))2

 ·max
y∈Ω

{
etf(x) − etf(y)

f(x)− f(y)

}

≤ v(f) ·
∑
x∈Ω

µ(x)etf(x) ·max
y∈Ω

{
1− e−t(f(x)−f(y))

f(x)− f(y)

}
≤ v(f) · sup

z∈R

{
1− e−tz

z

}
· Eµ

[
etf

]
≤ t · v(f) · Eµ

[
etf

]
. (Using 1− x ≤ e−x for all x ∈ R)

We conclude this section with a conjectured connection between path coupling and the modified
log-Sobolev inequality.

Conjecture 1 (Peres–Tetali; see e.g. [ELL17]). Let P be a reversible Markov chain on a metric
space (Ω, d) with stationary measure µ. If there exists α > 0 such that Eq. (1) holds for P w.r.t.
the transportation distance W1(·, ·), then P also satisfies ϱ(P) ≥ Ω(α).

It is known by the work of Eldan–Lee–Lehec [ELL17] that such a contraction w.r.t. W1(·, ·)
implies a transport-entropy inequality, which is equivalent to sub-Gaussian concentration statements
like Eq. (10), and weaker than the modified log-Sobolev inequality by Proposition 2.1. Transport-
entropy inequalities will appear again in a future lecture, but for now, we refer interested readers
to an excellent monograph of Gozlan–Léonard [GL10]. For further positive results in support of
Conjecture 1, see [Mar19; Liu21; Bla+22].
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A Comparison Inequalities and Entropy vs. Variance
The goal of this section is to prove Proposition 1.5. We do this in a sequence of lemmas. Through-
out, P is some fixed reversible Markov chain on Ω with stationary measure µ.

Lemma A.1. For every nonnegative function f : Ω → R≥0, EP(f, log f) ≥ 4 · EP
(√

f,
√
f
)
. In

particular, 4κ(P) ≤ ϱ(P).

Proof. Note that the second inequality follows immediately from the first. To prove the first claim,
it suffices to show that for any x, y ∈ Ω,

(f(x)− f(y)) · (log f(x)− log f(y)) ≥ 4 ·
(√

f(x)−
√
f(y)

)2

.

Without loss of generality, we may assume f(x) ≥ f(y). Rearranging yields that this is equivalent
to

log
f(x)

f(y)
≥ 4 ·

√
f(x)−

√
f(y)√

f(x) +
√
f(y)

= 4 ·

√
f(x)
f(y) − 1√
f(x)
f(y) + 1

.

From here, it suffices to verify the simple one-dimension inequality log z ≥ 2 · z−1
z+1 for z ≥ 1. This

holds for z = 1, and so it suffices to show that the derivative of the left-hand side is greater than
the derivative of the right-hand side for all z ≥ 1, i.e. 1

z ≥ 4
(z+1)2 for all z ≥ 1. This holds by

“completing the square”.

Lemma A.2. For every real-valued function f : Ω → R, limc→∞ Entµ
(
(c+ f)2

)
= 2Varµ(f). In

particular, κ(P) ≤ 1
2γ(P).

Proof. The first statement is equivalent to

lim
ϵ→0

1

ϵ
Entµ

(
(1 +

√
ϵf)2

)
= 2Varµ(f).
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We use the second-order Taylor series for x 7→ (1 + x) log(1 + x), which is x+ 1
2x

2 +O(x3) and is
valid for all |x| < 1. This trick is sometimes called linearization. Applying this, we get

Entµ
(
(1 +

√
ϵf)2

)
= Eµ

[(
2
√
ϵf + ϵf2

)
+

1

2

(
2
√
ϵf + ϵf2

)2]
−
(
2
√
ϵEµ[f ] + ϵEµ[f

2]
)
− 1

2

(
2
√
ϵEµ[f ] + ϵEµ[f

2]
)2

+O(ϵ3/2)

= 2Varµ(f) +O(ϵ3/2).

The first equality follows immediately. For the second inequality, let f be any function attaining
γ(P), i.e. EP(f,f)

Varµ(f)
= γ(P). Then

κ(P) ≤ inf
c∈R≥0

EP(c+ f, c+ f)

Entµ ((c+ f)2)

= inf
c∈R≥0

EP(f, f)
Entµ ((c+ f)2)

≤ EP(f, f)
limc→∞ Entµ ((c+ f)2)

=
EP(f, f)
2Varµ(f)

=
1

2
γ(P).

Lemma A.3. For every real-valued function f : Ω → R,

Entµ

(
1 +

f

c

)
=

1

2c2
(Varµ(f) + oc(1))

EP
(
1 +

f

c
, log

(
1 +

f

c

))
=

1

c2
(EP(f, f) + oc(1)) ,

where oc(1) is a quantity tending to 0 as c → ∞. In particular, ϱ(P) ≤ 2γ(P).

Proof. Again, using the second-order Taylor series for x 7→ (1+x) log(1+x), which is x+ 1
2x

2+O(x3)
and is valid for all |x| < 1, we get

Entµ

(
1 +

f

c

)
= Eµ

[
f

c
+

1

2
· f

2

c2

]
− Eµ

[
f

c

]
− 1

2
Eµ

[
f

c

]2
+O(1/c3)

=
1

2c2
(Varµ(f) + oc(1)) .

The rest of the proof is similar to the one for Lemma A.2.

B Unfinished Proofs
Proof of Lemma 1.6. First, we claim that the probability density function Tk is given by

pk(t) =
tk−1e−t

(k − 1)!
.
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This is a straightforward calculation obtained by inductively convolving k copies of the x 7→ e−x,
the probability density function of Exp(1). It follows that

Pr[Nt = k] = Pr[Tk ≤ t and t < Tk+1]

=

∫ t

0

uk−1e−u

(k − 1)!

∫ ∞

t−u

e−v dv︸ ︷︷ ︸
=e−teu

du

= e−t

∫ t

0

uk−1

(k − 1)!
du

=
tke−t

k!
.

This is the probability mass function of the Poisson random variable with mean 1.

Proof of Proposition 2.1 =⇒ Theorem 1.4. Observe that for a fixed parameter t ≥ 0 to be deter-
mined later,

Pr
x∼µ

[f(x) ≥ Eµ[f ] + ϵ] = Pr
x∼µ

[
etf(x) ≥ et·Eµ[f ]+t·ϵ

]
≤

Eµ

[
etf

]
exp (t · Eµ[f ] + t · ϵ)

(Markov’s Inequality)

≤ exp

(
t2 · v(f)

2ϱ(P)
− t · ϵ

)
. (Proposition 2.1)

The optimal choice for t ≥ 0 is clearly ϱ(P)·ϵ
v(f) , which yields the first inequality. The second inequality

follows by combining the first inequality with 4κ(P) ≤ ϱ(P) (see Proposition 1.5).
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