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The primary theme of this lecture will be embedding other statistical mechanics models into
general hardcore models. These representation results are achieved through the (abstract) polymer
method. One beautiful aspect of this idea, in some sense, is it allows us to treat a large swathe
of counting problems in a unified manner. While this often costs us a significant “blow-up in the
size of the model representation”, we’ll nonetheless see how to develop efficient algorithms based
on very similar ideas in Barvinok’s polynomial interpolation algorithm.

In the specific setting of (multivariate) independence polynomials, this idea of using low-degree
Taylor approximations to the log-partition function goes under the name cluster expansion (or
Mayer expansion); see [SS05] and references therein. We’ll see new applications to approximate
counting in systems at low temperatures, i.e. with strong interactions. This is a very challenging
setting which defeats standard local Markov chains like Glauber dynamics, and where standard
notions of correlation decay (e.g. weak/strong spatial mixing) fail dramatically. The algorithmic
results we will discuss are largely based on [JKP20] (see also [HPR20]).

1 Universality of the Hardcore Model

1.1 Abstract Polymer Models
We start by defining abstract polymer models at high generality. We emphasize that, at least
for the purposes of this lecture, they are exactly the same as hardcore models but with possibly
heterogeneous fugacities. However, we use the nomenclature of polymer models to be consistent
with the literature.1 One can incorporate softcore interactions but we won’t do so here; see the
Cluster Expansion chapter in [FV17] for a more general discussion.

Definition 1 ((Abstract) Polymer Model). An (abstract) polymer model is a triple (C,∼,w : C →
C), where C is a finite set of elements called polymers, ∼ is a symmetric relation on polymers, and
w is a collection of complex-valued weights. If two polymers γ, γ′ are compatible, then we write
γ ∼ γ′; we write γ ̸∼ γ′ otherwise. We further impose that all polymers are incompatible with
themselves, i.e. γ ̸∼ γ for all γ ∈ C. The associated polymer partition function is given by

ΞC = ΞC(w)
def
=

∑
Γ

∏
γ∈Γ

wγ , (1)

where the summation is over all collections of mutually compatible polymers.

Any abstract polymer model is a hardcore model w.r.t. the associated incompatibility graph
on (C, ̸∼), where there is an edge between γ, γ′ if and only if γ ̸∼ γ′. Each Γ in Eq. (1) is just an
independent set in this incompatibility graph, and the function ΞC(w) is then just the associated
multivariate independence polynomial evaluated at w.

However, unlike our previous discussion of the hardcore model on bounded-degree graphs, the
polymers γ in this lecture will often have concrete combinatorial meaning as connected subgraphs
(U,F ) of some host graph G = (V,E). We will then say two subgraphs γ = (U,F ), γ′ = (U ′, F ′)
are compatible if, for example, they are vertex-disjoint or d(U,U ′) > 1 where d(·, ·) denotes the
shortest path distance in G. These types of compatibility relations preclude possibly nasty “double

1The term “polymer model” is a bit overloaded in statistical mechanics. Dobrushin [Dob96] tried to remedy this
by renaming these as animal models, but the term polymer model stuck.
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counting issues” where e.g. the union of two smaller compatible polymers is itself a polymer. These
types of polymer models are sometimes called subgraph polymer models, and in general have size
exponential in the size of the host graph G = (V,E). Despite this blow-up in the representation
size, they are nonetheless useful gadgets in both probabilistic analyses as well as approximate
counting.

The rest of this section will be devoted to nontrivial examples which hopefully illustrate how
they can arise in a multitude of settings seemingly unrelated to independent sets. We emphasize
that any given “base model” can admit many genuinely distinct polymer representations, each of
which may illuminate a different aspect of the “base model”. In particular, there is some creative
freedom in designing good polymers. For instance, we will see three very different polymer models
which capture the ferromagnetic Ising model. See [HPR20] for more sophisticated examples called
contour models, which take advantage of the additional geometric structure available when G = Zd.
An example of bipartite independent sets is discussed in Section 3 in greater depth.

1.2 Even Subgraphs Representation of the Ferromagnetic Ising Model
Let G = (V,E) be a host graph, and consider the ferromagnetic Ising model on G with inverse
temperature β ≥ 0 and uniform external field h ∈ R. Now define an abstract polymer model
(C,∼,w : C → R≥0) via the following data:

• For a subset of edges F ⊆ E, let VF = {v : degF (v) > 0} denote the set of vertices
participating in some edge of F . A polymer γ is a subgraph (V, F ) such that (VF , F ) is
connected.

• Two polymers γ = (V, F ), γ′ = (V, F ′) are compatible if VF ∩ VF ′ = ∅.

• The weight of a polymer is given by wγ
def
= ρ|odd(F )|λ|F | where ρ = tanh(h), λ = tanh(β).

Since wγ⊔γ′ = wγ · wγ′ for any pair of incompatible polymers (where the disjoint union is applied
to the edge sets of γ, γ′), and every subgraph (V, F ) of G can be uniquely decomposed as a disjoint
union over its maximal connected components, the polymer partition function ΞC(w) is precisely

Ẑeven
G (ρ, λ) =

∑
F⊆E

ρ|odd(F )|λ|F |,

the even subgraphs partition function. We already previously saw that Ẑeven
G (ρ, λ) = C(β, h)·Z Ising

G ,
where C(β, h) = 2|V | cosh(h)|V | cosh(β)|E| is an easy-to-compute constant.

1.3 Low-Temperature Ferromagnetic Potts Model
Let G = (V,E) be a graph, β ≥ 0 be an inverse temperature parameter, and q ∈ N be a number of
colors. For an assignment σ : V → [q], write m(σ) = #{e = uv ∈ E : σ(u) = σ(v)} for the number
of monochromatic edges in G under σ. The Gibbs distribution of the (q-state) ferromagnetic Potts
model is given by

µPotts
G,q,β(σ) ∝ exp (β ·m(σ)) , ∀σ ∈ [q]V , (2)

with partition function

ZPotts
G,q,β

def
=

∑
σ:V→[q]

exp (β ·m(σ)) .

The special case q = 2 recovers the ferromagnetic Ising model. µPotts
G,q,β is ferromagnetic in the sense

that neighboring vertices are encouraged to take on the same color. In particular, when β is large,
the distribution µPotts

G,q,β concentrates on the q trivial ground states given by assigning all vertices
the same color.

Following [JKP20], we build a polymer model with captures the deviations from an arbitrarily
chosen ground state. Define an abstract polymer model (C,∼,w : C → R≥0) via the following
data:

• A polymer γ is a subset of vertices V such that the induced subgraph G[γ] is connected.
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• We say two polymers γ, γ′ are compatible if d(γ, γ′) > 1 w.r.t. the shortest path metric.

• The weight of a polymer γ ⊆ V is given by

wγ
def
= exp (−β · |E(γ, V \ γ)|) · ZPotts

G[γ],q−1,β .

The associated polymer partition function is then exactly

ΞC(w) = exp(−β · |E|) · ZPotts
G,q,β .

The intuitive picture is the following: If we fix an arbitrarily chosen color c∗ ∈ [q], then each γ
represents a connected component of vertices who are colored anything but c∗. In other words,
the polymers capture “defects” relative to the ground state where all vertices are assigned c∗.
Specializing to q = 2, this gives another way of encoding the ferromagnetic Ising model as an
abstract polymer model, which is very different from the one we say in Section 1.2.

By itself, this single polymer model isn’t so useful since the weights ZPotts
G[γ],q−1,β are almost

hopelessly complicated, especially if |γ| is large. However, [JKP20] proved the following interesting
result: Suppose G is an expander graph and β is sufficiently large as a function of q, the expansion
factor, and the maximum degree of G. Then, we can approximate the Potts model on G as a
q-component mixture of these polymer models truncated only to polymers of size ≤ |V | /2. Each
such truncated polymer model captures deviations from each of the q ground states, and has
a convergent cluster expansion which we can approximate via Barvinok’s algorithm. We fully
implement this strategy for a simpler model in Section 3.

This approximation result formalizes the intuition that the main contributions to ZPotts
G,q,β come

from configurations which are predominantly one color. Notably, it also implies torpid mixing
of local Markov chains like Glauber dynamics. We refer interested readers to [JKP20] for more
details.

1.4 The Random Cluster Model
Let G = (V,E) be a graph, and let q ∈ R≥0, 0 ≤ p ≤ 1 be parameters. Define a subgraph polymer
model as follows:

• A polymer γ is a subset of edges F ⊆ E such that the subgraph (VF , F ) is connected, where
as before, we write VF = {v : degF (v) > 0}.

• Two polymers γ = (V, F ), γ′ = (V, F ′) are compatible if VF ∩ VF ′ = ∅.

• The weight of a polymer γ = (V, F ) is given by

wγ
def
= q−(|VF |−1) ·

(
p

1− p

)|F |

.

The associated polymer partition function is given by

ΞC(w) = q−|V |(1− p)−|E| · ZRC
G (p, q),

where

ZRC
G (p, q)

def
=

∑
F⊆E

qk(F ) · p|F |(1− p)|E\F |

is the partition function of the Fortuin–Kasteleyn random cluster model with parameters p, q
[FK72]. We refer interested readers to [HJP23] for further connections between the random cluster
model and abstract polymer models. The following lemma shows that this gives an alternative
encoding of the ferromagnetic Potts model compared to the one in Section 1.3.

Lemma 1.1. Let G = (V,E) be a graph. Then for every positive integer q ∈ N and every β ≥ 0,

ZPotts
G,q,β = e−β·|E| · ZRC

G

(
1− e−β , q

)
.
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Proof. We expand the Potts partition function as

ZPotts
G,q,β =

∑
σ:V→[q]

∏
uv∈E

exp (β · 1[σ(u) = σ(v)])

=
∑

σ:V→[q]

∏
uv∈E

(
1 +

(
eβ − 1

)
· 1[σ(u) = σ(v)]

)
=

∑
σ:V→[q]

∑
F⊆E

(
eβ − 1

)|F | ∏
uv∈F

1[σ(u) = σ(v)]

=
∑
F⊆E

(
eβ − 1

)|F | ∑
σ:V→[q]

∏
uv∈F

1[σ(u) = σ(v)]

=
∑
F⊆E

qk(F )
(
eβ − 1

)|F |

= eβ·|E| · ZRC
G

(
1− e−β , q

)
.

In the penultimate step, we used the fact that every connected component of (V, F ) must be
monochromatic in order to have nonzero contribution, and so we have exactly q choices for each
such component.

Remark 1. By sending β to −∞, these manipulations also establish the following interesting
formula for the number of proper q-colorings in a graph:∑

F⊆E

(−1)|F | · qk(F ).

2 The Cluster Expansion
Now suppose we view each weight wγ not as a single complex number, but as a function wγ : C → C
(e.g. we could replace wγ by wγ ·ez for a variable z ∈ C). For instance, in the Ising model example
Section 1.2, wγ was naturally expressed as a function of the external field. Then the polymer
partition function becomes a function

ΞG(z) =
∑
Γ

∏
γ∈Γ

wγ(z).

We can then ask expand the Taylor series of its logarithm, and ask where this series converges.
We’ll eventually study the region of validity of this series, but for now, we state a beautiful
combinatorial formula for the coefficients of the expansion. This is essentially the same idea as
what we did previously for the matching polynomial. We refer interested readers to [Dob96; SS05;
FV17; PR17] for more general statements.

Throughout, let (C,w : C → C) be an abstract polymer model.

Definition 2 (Cluster). For a multiset of polymers Γ (with repetitions allowed), let HΓ denote
its incompatibility graph, where each vertex of HΓ corresponds to a polymer in Γ and two such
polymers are connected if and only if they are incompatible. A cluster is a multiset of polymers
such that HΓ is connected.

Definition 3 (Ursell Function). Define the Ursell function φ : {Graphs} → R mapping graphs to
reals by

φ(H) =
∑

A⊆E(H)
spanning and

connected

(−1)|A|.

Later on when we consider the issue of computing the Ursell Function for small graphs H, we
will need the fact that this is an evaluation of the Tutte polynomial of H at (x, y) = (1, 0); see
Eq. (6).
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Theorem 2.1 (Cluster Expansion as Taylor Series; Dobrushin [Dob96]). For every k ∈ N, we
have the formula

dk

dzk
log ΞG (wez)

∣∣∣∣∣
z=0

=

k∑
j=1

1

j!

∑
Γ=(γ1,...,γj)

cluster

φ(HΓ)

j∏
i=1

wγj
.

Furthermore, in a neighborhood of z = 0,

log ΞG(wez) =

∞∑
k=0

ekz

k!

∑
Γ=(γ1,...,γk)

cluster

φ(HΓ)
∏
γ∈Γ

wγ ,

and absolute convergence holds in the right-hand side.

Remark 2. One can generalize this to where w : C → C is some other function of z, rather than
simply scaling everything by ez. In this case, one replaces ekz

∏k
i=1 wγi

by dk

dzk

∏k
i=1 wγi

(z).
Since our focus in this lecture is on applications of the cluster expansion, we omit the proof and

refer interested readers to [Dob96]. For a derivation of the cluster expansion at a purely formal
level, see [SS05; FV17].

2.1 Convergence Criteria for the Cluster Expansion
We now recall the Kotecký–Preiss Condition for convergence. We previously stated it for completely
generic hardcore models. Here, we restate it in the language of abstract polymer models, along
with quantitative control on the rate of convergence.

Theorem 2.2 (Kotecký–Preiss Condition; [KP86]). Suppose there exists nonnegative functions
a, b : C → R≥0 such that ∑

γ′ ̸∼γ

|wγ′ | · ea(γ
′)+b(γ′) ≤ a(γ), ∀γ ∈ C. (3)

Then the cluster expansion for log ΞC converges absolutely. Furthermore,

∑
Γ=(γ1,...,γk) cluster
γ′ ̸∼γ for some γ′∈Γ

1

k!

∣∣∣∣∣∣φ(HΓ)
∏
γ′∈Γ

wγ′eb(γ
′)

∣∣∣∣∣∣ ≤ a(γ), ∀ polymers γ ∈ C.

Remark 3 (Markov Chains on Polymers). As we noted in the previous lecture, this criterion
is essentially the same as classical path coupling proofs of rapid mixing for Glauber dynamics
(e.g. Dobrushin/Dobrushin–Shlosman [Dob70; DS85], ℓ2-Dobrushin [Hay06; DGJ09], etc.). In the
context of polymer models, this path coupling analysis was carried out in [Che+21], where they
studied what is essentially a (variant of) Glauber dynamics run on the polymer model; they call
this Markov chain the polymer dynamics. The goal here is to develop faster algorithms for counting
and sampling in polymer models, particularly for applications like the bipartite hardcore model
(see Section 3) and the ferromagnetic Potts model (see Section 1.3). They show that the following
polymer mixing condition ∑

γ′ ̸∼γ

wγ′ · |γ′| ≤ (1− δ) · |γ| , ∀γ ∈ C

implies contraction of path coupling w.r.t. an appropriate Hamming metric weighted via |γ|; in
particular, polymer dynamics mixes in O(n log n) steps. However, the main challenge for the
polymer dynamics isn’t necessarily fast mixing, but actually implementing a single step of the
Markov chain. This is because there can be exponentially many polymers in a given polymer
model. Hence, to obtain fast algorithms, we actually need the weights wγ to decay sufficiently
quickly w.r.t. |γ|. We refer interested readers to [Che+21] for more details.

In the setting of subgraph polymer models, we truly need to study multivariate zero-freeness.
Indeed, since polymers are connected subgraphs of G, large polymers γ will have much larger degree
just by virtue of polymers γ′ contained within γ. To accommodate this, in most applications, we
will typically take the functions a(γ), b(γ) to grow linearly in |γ|.
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3 Application: Bipartite Hardcore Model on Expanders
Throughout this section, let G = (V,E) be a bipartite graph, with bipartition V = L ⊔ R and
maximum degree ∆. We also fix a fugacity λ ≥ 0 and consider the problem of estimating the
partition function of the hardcore model on G, i.e. the independence polynomial ZG(λ). Recall
that if λ is any number beyond the uniqueness threshold λc(∆) ≈ e

∆−1 , then there is no FPRAS for
this problem on general graphs of maximum degree ∆ unless NP = RP. Furthermore, if λ > λc(∆),
then with high probability over a uniformly random ∆-regular bipartite graph, local Markov chains
like Glauber dynamics require exponentially many steps to mix [MWW07]. Following [JKP20], we
show that despite these negative results, we can design FPTAS in the bipartite setting via polymer
models when λ is much larger than λc(∆) and G is an expander. Throughout, for S ⊆ V , we write
N(S)

def
= {v ∈ V \ S : v ∼ u for some u ∈ S} for the open neighborhood of S.

Definition 4 (Bipartite α-Expander). Let α > 0 be a constant. We say a bipartite graph G =
(L ⊔ R,E) is a bipartite α-expander if |N(S)| ≥ (1 + α) · |S| for all S ⊆ L with |S| ≤ |L| /2 and
all S ⊆ R with |S| ≤ |R| /2. Note that if S ⊆ L, then N(S) ⊆ R and vice versa.

Theorem 3.1 ([JKP20]). There exists a universal constant C > 0 such that the following holds:
For every α > 0, ∆ ∈ N and λ > C∆4/α, there exists an FPTAS for approximating ZG(λ) any
bipartite α-expander graph G of maximum degree ∆.

Our focus will be on approximate counting, but it isn’t difficult to convert this into an approx-
imate sampler; see also Remark 3. [JKP20] also showed that if we replace an arbitrary bipartite
α-expander with a uniformly random ∆-regular graph, then λ ≥ Ω

(
log2 ∆

∆

)
suffices, which almost

matches λc(∆) up to logarithmic factors in ∆.

3.1 Bipartite Independent Set as a Mixture of Polymer Models
To prove Theorem 3.1, we leverage polymer models and the cluster expansion. Since we are
operating in the regime of large λ, we cannot view our input hardcore model as an abstract polymer
model and apply the cluster expansion directly. We instead decompose it into a mixture of two
polymer models, corresponding to two natural ground states. The intuition is that, particularly
for an expander graph, the large independent sets G are either dominated by vertices in L or by
vertices in R, but not both.

To formalize this, let G2 be the graph obtained from G by connecting two vertices if and only
if their graph distance in G is at most 2. Define an abstract polymer model (CL,∼L,w(λ)) as
follows:

• A polymer in CL is any subset of vertices γ ⊆ L such that |γ| ≤ |L| /2 and the induced
subgraph G2[γ] is connected in G2. One should think of γ as being a maximal connected
component of I ∩ L in G2, where I ⊆ V is some independent set.

• We say two polymers γ, γ′ are compatible under ∼L if G2[γ ⊔ γ′] is not connected in G2.

• The weight of a polymer γ is given by wγ(λ) =
λ|γ|

(1+λ)|N(γ)| . Note that N(γ) ⊆ R is precisely
the set of vertices which are forced to be out of the independent set if we condition the
vertices of γ to be in. In particular,∑

I⊆V indep.
I∩L=γ

λ|I| = (1 + λ)|R| · wγ(λ), ∀ polymers γ ∈ CL. (4)

One should think of the polymers in CL as representing deviations from independent sets dominated
by vertices in R.

We define a second polymer model (CR,∼R,w(λ)) in a completely analogous way, with all
occurrences of L replaced by R. Let ΞL,ΞR denote their corresponding polymer partition functions.
The following result gives our desired approximation.

Proposition 3.2. Let G = (L ⊔ R,E) be a bipartite α-expander. Then for every λ > e11/α, the
number

(1 + λ)|R| · ΞL(w(λ)) + (1 + λ)|L| · ΞR(w(λ)) (5)

is a (1± e−n)-multiplicative approximation to ZG(λ).
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To prove this, we need the following technical lemma, which says that the restriction on the
polymer size |γ| ≤ |L| /2 in CL (and respectively for CR) is essentially without loss of generality.
We proof is provided in Appendix A.

Lemma 3.3. Let I be an independent set in a bipartite α-expander. Then |I ∩ L| ≤ |L| /2 or
|I ∩R| ≤ |R| /2.

Proof of Proposition 3.2. The essence of Eq. (5) comes from Eq. (4), which counts the contribution
of independent sets which intersect any particular polymer γ. For convenience, let us call a subset
of vertices S ⊆ V sparse if the maximal connected components of S ∩ L ⊆ L have size at most
|L| /2 (and analogously for the components of S ∩R). An immediate consequence of Eq. (4) is

ZG(λ) =
∑

I⊆V indep.
I∩L or I∩R is sparse

λ|I| +
∑

I⊆V indep.
I∩L and I∩R not sparse

λ|I|

︸ ︷︷ ︸
=0 by Lemma 3.3

.

Similarly, we may expand Eq. (5) as

(1 + λ)|R| · ΞL(w(λ)) + (1 + λ)|L| · ΞR(w(λ))

=
∑

I⊆V indep.
I∩L is sparse

λ|I| +
∑

I⊆V indep.
I∩R is sparse

λ|I| (Using Eq. (4))

= ZG(λ) +
∑

I⊆V indep.
I is sparse

λ|I|. (Double counting and previous display)

This already shows that ZG(λ) is a lower bound for Eq. (5). It remains to show that∑
I⊆V indep.
I is sparse

λ|I| ≤ e−n · ZG(λ).

Since ZG(λ) ≥ λ|L| + λ|R| ≥ λn/2, what we will show is that any sparse independent set in a
bipartite α-expander must have size much smaller than n/2. This is intuitive because if I ∩ L is
large, then by expansion, so is N(I ∩ L) ⊆ R. But since N(I ∩ L) must be disjoint from I ∩R, it
must force I ∩R to be small. We now formalize this intuition.

Let I ⊆ V be any sparse independent set, and let A = I ∩ L,B = I ∩ R. Since the maximal
connected components of A in G2 have size ≤ |L| /2, we can apply expansion to each individual
polymer in A, and combine them to obtain

|N(A)| ≥ (1 + α) · |A| ,

even if A itself has size greater than |L| /2. Similarly, |N(B)| ≥ (1 + α) · |B|. So far, we’ve only
used sparsity. But because I is independent, B must be disjoint from N(A) and vice versa. It
follows that

n = |L|+ |R|
≥ |A|+ |N(A)|+ |B|+ |N(B)| (I is independent)
≥ (2 + α) · |I| , (I is sparse and I = A ⊔B)

i.e. all sparse independent sets I ⊆ V satisfy |I| ≤ n
2+α . Using a trivial bound on the total number

of sparse independent sets, it follows that∑
I⊆V indep.
I is sparse

λ|I|

ZG(λ)
≤ 2n · λ

n
2+α

λn/2
≤ e−n (Using λ > e11/α)

as desired.

7



3.2 Convergence of the Cluster Expansion for CL, CR
Now that we have the polymer models we want to work with, we now need to verify that their
cluster expansions converge as we want them to. This is so that we can approximate each of
ΞL(w(λ)),ΞR(w(λ)), which together approximate ZG(λ) via Proposition 3.2.

Proposition 3.4. There exists a universal constant C > 0 such that the following holds: For
every α > 0, ∆ ∈ N, λ > C∆4/α, and bipartite α-expander G = (L⊔R,E) of maximum degree ∆,
the two polymer models CL, CR defined in Section 3.1 satisfy the Kotecký–Preiss Condition Eq. (3)
with a(γ) = b(γ) = |γ| for all polymers γ.

To show this, we need the following lemma, which controls the number of neighboring incom-
patible polymers.

Lemma 3.5 ([Bor+13]). Let G = (V,E) be a graph of maximum degree ∆. Then for every vertex
v ∈ V , the number of S ⊆ V such that v ∈ S, G[S] is connected, and |S| = t is at most (e∆)t.

We skip the proof of this lemma. The main idea behind it is to count the number of t-vertex
trees in G containing v, which is certainly an upper bound on the number of connected induced
subgraphs we’re looking at. Once we have restricted attention to trees, it is not hard to see that
the worst case is when G is the infinite ∆-regular tree. For this, there is an explicit formula for
the number of t-vertex subtrees containing some arbitrarily fixed “root” vertex. Furthermore, it is
upper bounded by (e∆)t.

Proof of Proposition 3.4. We do the analysis for CL; the one for CR follows by symmetry.∑
γ′ ̸∼Lγ

wγ′(λ) · e2|γ
′| ≤

∑
γ′ ̸∼Lγ

(1 + λ)−α·|γ′| · e2|γ
′| (α-expansion)

≤
∑

v∈N [N [γ]]

∑
γ′:γ′∋v

(1 + λ)−α·|γ′| · e2|γ
′| (Definition of ̸∼L)

≤
∑

v∈N [N [γ]]

∞∑
t=1

(
e3∆2(1 + λ)−α

)t
(Lemma 3.5, G2 has maximum degree ≤ ∆2)

≤ |N [N [γ]]|
∆2

(Using λ ≥ Ω(∆4/α))

≤ |γ| (G has maximum degree ∆)

3.3 Proof of Theorem 3.1
Suppose we wish to estimate ZG(λ) up to (1 ± ϵ)-multiplicative accuracy for some ϵ > 0. If
ϵ ≤ O(e−n), then our poly(1/ϵ) running time budget from the definition of an FPTAS permits
brute force enumeration. Hence, we may assume ϵ > Ω(e−n), which is the nontrivial error regime.
In light of Proposition 3.2, it then suffices to compute a (1±O(ϵ))-multiplicative approximation to
each of ΞL(w(λ)) and ΞR(w(λ)). We do this for the former via truncating the cluster expansion;
the latter follows symmetrically.

For a parameter m ∈ N, define

Tm(w)
def
=

∑
Γ=(γ1,...,γk) cluster

b(Γ)≤m

1

k!
· φ(HΓ) ·

∏
γ∈Γ

wγ
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where we set b(Γ)
def
=

∑
γ∈Γ b(γ) for convenience. Then

|Tm(w)− log ΞG(w)| ≤
∑

Γ=(γ1,...,γk) cluster
b(Γ)>m

1

k!

∣∣∣∣∣∣φ(HΓ)
∏
γ∈Γ

wγ

∣∣∣∣∣∣ (Theorem 2.1)

≤ e−m ·
∑
v∈V

∑
Γ=(γ1,...,γk) cluster

b(Γ)>m,γ∋v for some γ∈Γ

1

k!

∣∣∣∣∣∣φ(HΓ)
∏
γ∈Γ

wγe
b(γ)

∣∣∣∣∣∣
≤ e−m ·

∑
v∈V

a({v}) (Proposition 3.4 and Theorem 2.2)

≤ n · e−m. (Using a(γ) = |γ|)

Taking m ≤ O(log(n/ϵ)), we obtain our desired approximation. All that remains is to show how to
enumerate the clusters Γ = (γ1, . . . , γk) such that b(Γ) ≤ O(log(n/ϵ)) and compute their associated
Ursell functions φ(HΓ). Since we chose b(γ) = |γ|, brute force enumeration of such Γ amounts
to enumeration of all connected induced subgraphs of G with at most O(log(n/ϵ)) many vertices.
This can by done in (n/ϵ)O(log∆)-time by Lemma 3.5. For computation of the Ursell functions,
since each HΓ only has k ≤ O(log(n/ϵ)) many vertices, we can afford running time which is singly-
exponential in k. Unfortunately, naïve brute force requires 2O(k2)-time as there can be up to k2

many edges in HΓ. For this, we instead employ an algorithm of [Bjö+08] as a blackbox, since the
Ursell function φ(HΓ) is an evaluation of the Tutte polynomial of HΓ

TH(x, y)
def
=

∑
A⊆E(H)

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |. (6)

at (x, y) = (1, 0).
We emphasize that it was crucial to truncate based on the function b(·), as opposed to truncating

based only on the number of polymers in Γ, even though the latter is what we did in previous
applications of Barvinok’s method. This is because by our choice of b(γ) = |γ|, the restriction
b(Γ) ≤ m limits not only the number of polymers in Γ, but also bounds the size of each polymer
γ ∈ Γ by m. Hence, we only have to consider small polymers, of which there are only polynomially
many. This is how we can accommodate the fact that we’re looking at independent sets in an
exponentially large graph, the incompatibility graph of polymers.

4 Conclusion
The polymer method and cluster expansion are versatile tools in the study of Gibbs distributions.
One of the central themes of this framework is to design polymers which accurately capture devi-
ations from some underlying “perfect” object(s) (e.g. a system where there are no interactions at
all). For instance, in the “low temperature”/“strong interaction” regime, these could be the various
ground states of the Gibbs distribution. The fact that the interactions are strong imply that in a
typical sample from the Gibbs distribution, the deviations from one of the ground states will be
small. This implies that the polymer models capturing these deviations are themselves effectively
in “high temperature”, and so we can apply expansion methods [JKP20], Markov chains [Che+21],
etc. on them. We conclude with some open problems.

Question 1. In low-temperature settings like Section 3, existing algorithms based on truncating
the cluster expansion are rather slow. There are faster MCMC-based algorithms [Che+21], but
they are run on collections of polymers, and hence are more complicated to implement. They must
also in their own way deal with the fact that there can be exponentially many polymers. Can we
design simpler and faster algorithms? For instance, even though Glauber dynamics mixes slowly in
the worst case, can we show that with an appropriate easy-to-sample-from initializing distribution,
Glauber dynamics mixes in polynomial-time?

Question 2 (#BIS). Does there exist an FPRAS for approximately counting (unweighted) indepen-
dent sets in arbitrary bipartite graphs? Even the existence of subexponential-time approximation
algorithms is open.
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#BIS is an important problem in the complexity theory of approximate counting and sampling
since many natural problems reduce to it, e.g. counting downsets in a poset [Dye+04], counting
stable matchings in the stable marriage problem [CGM12], computing the partition function of
the ferromagnetic Potts model/random cluster models [GJ08; GJ12a; GJ12b; GJ13; GJ14], and
computing the partition function of the ferromagnetic Ising model with inconsistent external fields
[GJ07] (see also [LLZ14]). #BIS is also complete for a certain logically-defined complexity class
known as #RHΠ1 under approximation-preserving reductions [Dye+04]. Its complexity is wide
open.
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A Unfinished Proofs
Proof of Lemma 3.3. Without loss of generality, we may assume |L| ≤ |R|. Let A = I ∩ L,B =
I ∩ R, and suppose |B| > |R| /2. By choosing S ⊆ B such that |S| = |R| /2, we see that
|N(B)| ≥ |N(S)| ≥ (1 + α) · |S| = (1 + α) · |R| /2. Since I is an independent, A and N(B) must
be disjoint, whence

|A| ≤ |L| − |N(B)| < |L| − (1 + α) · |R| /2 < |L| /2.
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