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As we saw in the previous lectures how zero-freeness of the partition function implies the
existence of deterministic efficient approximate counting algorithms. This lecture further develops
this theory in two important ways. In the first part of this lecture, we study a new method
for establishing zero-free regions based on Asano–Ruelle contractions. This is another extremely
elegant “local method” for proving zero-freeness. We will use this method to prove the famous
Lee–Yang Circle Theorem for the ferromagnetic Ising model. In preparation for our discussion of
the polymer method and the cluster expansion, the second part of the lecture is devoted to proving
multivariate zero-freeness in a polydisk around 0 for the multivariate independence polynomial.
This is related to our previous discussion of the hardcore model, except the emphasis now will be
on nonuniform fugacities.

Since it will be fundamental throughout, let us first describe the “types” of zero-free regions we
will encounter in the setting of multivariate polynomials.

Definition 1 (Stability). Let Γ1, . . . ,Γn ⊆ C be subsets of the complex plane. We say a multivari-
ate polynomial p(z1, . . . , zn) is Γ1×· · ·×Γn-stable if p(z) ̸= 0 whenever zi ∈ Γi for all i = 1, . . . , n.
If Γ1 = · · · = Γn = Γ for some Γ ⊆ C, then we simply say p is Γ-stable.

Typically, our region Γ will be an open (possibly shifted) half-plane (e.g. Ht = {z ∈ C : Re z >
t} for some t ∈ R), a (scaled) unit disk, or its complement. Such regions are sometimes called
circular. A polydisk is a Cartesian product of (possible scaled and shifted) disks in C.

At first sight, it might seem unnatural to restrict attention to “product-type” sets Γ1×· · ·×Γn,
since at maximum generality one could just study the set {z ∈ Cn : p(z) ̸= 0}. However, this
product structure becomes convenient when we wish to invoke “self-reducibility” arguments, which
roughly corresponds to fixing zS to some aS ∈ CS and looking at the induced polynomial in the
variables zV \S .

1 The Lee–Yang Circle Theorem
For a graph G = (V,E), an inverse temperature β ≥ 0, and a vector of external fields h ∈
RV , recall the ferromagnetic Ising model has Gibbs distribution on {±1}V given by µ(σ) ∝
exp

(
β
2σ
⊤AGσ + ⟨h, σ⟩

)
. If we view each σ ∈ {±1}V as being the indicator of the set of ver-

tices S = {v ∈ V : σ(v) = +1}, then

1

2
σ⊤AGσ =

∑
uv∈E

σuσv = |E| − 2 · |E (S, V \ S)|

where E (S, V \ S) denotes the collection of edges crossing the cut (S, V \ S). Hence, using the
minor change of variables λv = exp(2hv), we can write rewrite the partition function of the
ferromagnetic Ising model as the multivariate cut polynomial

ZG,β(λ) ∝
∑
S⊆V

exp (−2β · |E (S, V \ S)|) · λS

up to an easy-to-compute normalization factor; here and throughout, we will use the convenient
shorthand λS def

=
∏

v∈S λv. We also write ZG,β(λ) = ZG,β(λ1) for the univariate restriction. The
following beautiful theorem of Lee–Yang asserts that all zeros of the ZG,β(λ) are confined to the
unit circle.
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Theorem 1.1 (Lee–Yang Circle Theorem; [LY52]). For every graph G = (V,E) and every β ≥ 0,
all zeros of ZG,β(λ) lie on the unit circle {z ∈ C : |z| = 1}. More generally, the multivariate
polynomial ZG,β(λ) is D-stable and Dc

-stable.

Remark 1. The zeros of ZG,β(λ) are sometimes called Lee–Yang zeros. Instead of fixing the inverse
temperature and reparametrizing the partition function as a polynomial in the external field, one
can also fix the external field and reparametrize the partition function as a polynomial in the
interaction strength. In this case, the zeros of the resulting polynomial are sometimes called the
Fisher zeros. In [LSS19a], it is shown that there are no Fisher zeros in a strip around precisely
the range of β for which the Gibbs distribution of the ferromagnetic Ising model exhibits strong
spatial mixing.

Combined with Barvinok’s polynomial interpolation algorithm gives a deterministic quasipolynomial-
time algorithm for estimating the partition function as long as the external field h is bounded away
from 0 (or equivalently, λ is bounded away from 1). With some more work, one can make this into
a polynomial-time algorithm when G has bounded maximum degree; see [LSS19b] for details.

Lee and Yang’s interest was originally leveraging the presence/absence of zeros to detect phase
transitions in statistical physics models. Their perspective was that a phase transition occurs at
some threshold λc if the limiting free energy Fβ(λ) = limn→∞

1
n logZG,β(λ) (in the specific setting

of the Ising model) is discontinuous at λc, signaling a loss of smoothness for logZG,β(λ) as one
looks at progressively larger and larger graphs. Since our discussion at present is informal, we
won’t get into issues of whether or not the large n limit exists. The main intuition is that these
discontinuities correspond to sudden changes in the behavior of the Gibbs distribution in large-scale
systems as one perturbs λ in a neighborhood of λc.

For the ferromagnetic Ising model, the fact that all zeros of the univariate partition function
ZG,β(λ) are restricted to the unit circle means there can be at most one such phase transition in the
parameter λ. Furthermore, if there is any such phase transition, then it must occur at λ = 1. Theo-
rem 1.1 formalizes the intuition that when λ > 1 is a constant, then all vertices are macroscopically
biased towards +1 simultaneously, which destroys the natural bottleneck that would otherwise be
formed between predominantly −1 configurations and predominantly +1 configurations. The same
holds for λ < 1, with the roles of +1 and −1 reversed.

In contrast, we mentioned in a previous lecture that for the hardcore model on graphs G of
maximum degree ∆, the independence polynomial ZG(λ) is zero-free in a small strip around the
interval [0, λc(∆)); here, recall λc(∆) is again the uniqueness threshold for the hardcore model. On
the other hand, these zeros do cluster around λc(∆), forming a barrier between λ < λc(∆) where
we have efficient approximate counting algorithms (e.g. via correlation decay or polynomial inter-
polation), and λ > λc(∆) where the independence polynomial becomes NP-hard to approximate.
We refer interested readers to [Ben+23] for further discussion of the roots of the independence
polynomial.

In the rest of the section, we prove Theorem 1.1. As a sanity check, let us start by proving the
“base case”.

Lemma 1.2. For any a ∈ C with |a| ≤ 1, the bivariate polynomial p(z1, z2) = 1+ az1+ az2+ z1z2
is D-stable.

If a = exp(−2β) for β ≥ 0, the polynomial p(z1, z2) is exactly the cut polynomial for the graph
consisting of two vertices connected by an edge. Hence, Lemma 1.2 genuinely captures a very
special (but nonetheless important) case of Theorem 1.1.

Proof of Lemma 1.2. If |a| = 1, then |a| = 1 and a · a = 1 and so we can factor p as p(z1, z2) =
(1 + az) (1 + az). This is clearly D-stable since each of the factors are D-stable.

Now suppose |a| < 1. For every z2 ∈ C, there is a unique z1 such that p(z1, z2) = 0 given by
z1 = f(z2), where f is the Möbius transformation

f(z) = −1 + az

a+ z
.

To prove D-stability, we must show that for any z satisfying |z| < 1, we have |f(z)| > 1. For this, a
routine computation shows that f−1(z) = − 1+az

a+z ; essentially f−1 is the same as f except we have
exchanged the roles of a and a.

We prove that f (and f−1) map the unit circle ∂D = {z ∈ C : |z| = 1} into itself. Clearly,
|f(0)| > 1 by the fact that |a| < 1. These two facts imply |f(z)| > 1 for all z ∈ D because if

2



|f(z)| < 1 for some z ∈ D, then by continuity there must exist z′ ∈ D along the line segment (or
any smooth curve contained in D) connecting 0 and z such that with |f(z′)| = 1, contradicting
f−1(∂D) = ∂D.

To show f(∂D) = ∂D, observe that if |z| = 1, then

|1 + az| = |1 + az| · |z| (Using |z| = |z| = 1)

= |z + a| (Using |z|2 = 1)
= |a+ z| .

In particular, |f(z)| = 1 for every |z| = 1. The same holds for f−1 be replacing a with a.

1.1 On Hadamard Products of Polynomials
The main technical theorem towards the full proof of Theorem 1.1 is the following result showing
D-stability is preserved under taking Hadamard/Schur products of polynomials. For two multiaffine
polynomials p(z) =

∑
S⊆[n] aSz

S and q(z) =
∑

S⊆[n] bSz
S , we define their Hadamard product to

be the polynomial (p ∗ q)(z) =
∑

S⊆[n] aSbSz
S given by coefficient-wise products; as previously

mentioned, we use the shorthand zS =
∏

i∈S zi. This can obviously be defined much more generally,
but we concentrate on the multiaffine case.

Theorem 1.3 (Hadamard Products and D-Stability). Suppose the multiaffine polynomials p(z) =∑
S⊆[n] aSz

S and q(z) =
∑

S⊆[n] bSz
S are D-stable. Then so is their Hadamard product p ∗ q.

We will prove Theorem 1.3 via a technique called Asano–Ruelle contractions in the next sub-
section. For now, we combine it with Lemma 1.2 and an inductive argument to complete the
proof of the Lee–Yang Theorem. While we could have directly used Asano–Ruelle contractions
and Lemma 1.2 to do this, we believe Theorem 1.3 and theorems like it are interesting in their own
right.

Proof of Theorem 1.1. For each edge e = {u, v} ∈ E, define the polynomial

pe(λ)
def
=

∑
S⊆V :E(S,V \S)∋e

exp(−2β) · λS +
∑

S⊆V :E(S,V \S)̸∋e

λS

=
(
1 + e−2βλu + e−2βλv + λuλv

)
·

∏
w∈V \{u,v}

(1 + λw).

The second representation of pe plus Lemma 1.2 shows that pe is D-stable. The first representation
of pe shows that our final partition function ZG,β(λ), the full multivariate cut polynomial of G, is
a Hadamard product of the {pe(λ)}e∈E . A straightforward inductive application of Theorem 1.3
shows that ZG,β(λ) is D-stable. Since ZG,β(λ) = λV ·ZG,β(1/λ) just from the fact that E(S, V \S)
is invariant if you replace S with V \ S, it also follows that ZG,β(λ) is Dc

-stable. By restricting
λ to λ1, it immediately follows that the univariate polynomial ZG,β(λ) is simultaneously zero-free
in D and in Dc

; in particular, its roots are forced to lie on the unit circle {z ∈ C : |z| = 1}.

1.2 Asano–Ruelle Contractions
In this subsection, we introduce an intriguing local operation for proving zero-freeness where we
merge two variables into a single variable and throw away some terms. The goal is to understand
the evolution of the zeros under these operations. We will then use this to give an inductive proof
of Theorem 1.3.

Lemma 1.4 ([Asa70; Rue71]). Let K1,K2 ⊆ C be closed subsets which do not contain 0. Suppose
a, b, c, d ∈ C are complex numbers such that the bivariate polynomial p(z1, z2) = a+bz1+cz2+dz1z2
is Kc

1 ×Kc
2-stable. Then the univariate polynomial q(z) = a+ dz is (−K1 ·K2)

c-stable.

Proof. We prove this lemma in the special case K1 = K2 = Dc. In this case, the lemma asserts
that if a+ bz1 + cz2 + dz1z2 is D-stable, then so is a+ dz. For the general case, we refer the reader
to [Rue71].

Since p is D-stable, a ̸= 0. We can assume d ̸= 0 since otherwise, the claim is vacuous. The
unique root of q is −a

d . Suppose for contradiction that it lies inside the unit disk D, i.e. |a| < |d|.
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We may also assume without loss of generality that |b| ≥ |c|. We use this to construct a pair
z1, z2 ∈ D such that p(z1, z2) = 0. For this, we exhibit some z2 ∈ D such that |b+ dz2| > |a|+ |c|.
This is sufficient because for each z2 ∈ C, there is a unique choice of z1 such that p(z1, z2) = 0
given by z1 = −a+cz2

b+dz2
, whence

|z1| =
|a+ cz2|
|b+ dz2|

<
|a|+ |c|
|b+ dz2|

< 1,

again assuming z2 satisfies |z2| < 1 and |b+ dz2| > |a| + |c|. To construct such a z2 ∈ D, first
observe that |a| < |d| and |b| ≥ |c| imply |b| + |d| > |a| + |c|. With this in mind, choose the
angle of z2 such that dz2 and b point in the same direction (viewed as vectors in R2). Then
|b+ dz2| = |b|+ |z2| · |d|. Clearly, we can choose the length of z2 to be sufficiently close to 1 such
that |b|+ |z2| · |d| > |a|+ |c| (since |b|+ |d| > |a|+ |c| is a strict inequality). The chosen angle and
length completely determine z2, and so we’re done.

Corollary 1.5. Let p(z1, . . . , zn) =
∑

S⊆[n] aSz
S be a multivariate polynomial. If p is D-stable,

then so is the polynomial q obtained by applying Asano–Ruelle contraction to the two variables
(zi, zj), for any i ̸= j.

Proof. We may write

p(z) =
∑
S ̸∋i,j

aSz
S

︸ ︷︷ ︸
=a(z−ij)

+ zi
∑

S∋i,S ̸∋j

aSz
S−i

︸ ︷︷ ︸
=b(z−ij)

+ zj
∑

S ̸∋i,S∋j

aSz
S−j

︸ ︷︷ ︸
=c(z−ij)

+ zizj
∑
S∋i,j

aSz
S−i−j

︸ ︷︷ ︸
=d(z−ij)

q(z−ij , w) =
∑
S ̸∋i,j

aSz
S + w

∑
S∋i,j

aSz
S−i−j = a(z−ij) + w · d(z−ij).

Fix all variables z−ij to be arbitrarily chosen complex numbers in D. Then with this specialization,
p becomes a bivariate polynomial in zi, zj , and q becomes a univariate polynomial in w. Since p
must remain D-stable, by Lemma 1.4, q is D-stable as a univariate polynomial in w. Since we chose
arbitrary complex numbers in D for z−ij , it follows that q(z−ij , w) ̸= 0 whenever all of its inputs
variables are in D, i.e. q is D-stable.

Proof of Theorem 1.3. Consider the product polynomial

r(x,y)
def
= p(x) · q(y) =

∑
S,T⊆[n]

aSbTx
SyT

on 2n variables x1, . . . , xn, y1, . . . , yn. Since p, q are each individually D-stable, so is r. We itera-
tively apply Asano–Ruelle contractions to the pairs of variables (xi, yi) for each i = 1, . . . , n. In
each contraction, we keep all other variables fixed as if they are constants, and so Corollary 1.5 and
D-stability of r imply that all polynomials encountered throughout this process are all D-stable.
At the end of all n contractions, we obtain the Hadamard product p ∗ q, since we kept only pairs
of subsets S, T ⊆ [n] such that for all i ∈ [n], either i is in both S, T or is in neither; in particular,
S = T , and we replaced each xiyi in xSyT with the single variable zi.

1.3 A Remark on Half-Plane Stability for Even Subgraphs
Previously, we saw how to design an FPRAS for the ferromagnetic Ising partition function by
running Glauber dynamics on a transformation of the configuration space into the collection of
even subgraphs of G. At the time, the transformation was obtained by a clever change of variables:
ρv = tanh(hv) for all v ∈ V , and w = tanh(β). This was achieved using the rather mysterious
identity ex = cosh(x)·(1+tanh(x)) followed by brute force calculations. It turns out, we can provide
some post hoc justification for this based on complex analysis, assuming one already knows the
Lee–Yang Circle Theorem. If we write λv = e2hv as we did above, then ρv = f(λv) where f is the
following Möbius transformation

f(z) =
z − 1

z + 1
.

These basic transformations are extremely fundamental and well-studied in complex analysis. In
particular, our f here maps
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• the unit circle ∂D to the imaginary line {z ∈ C : Re z = 0},

• the interior of the unit disk D to the open left half-plane {z ∈ C : Re z < 0}, and

• the open exterior of the unit disk Dc
to the open right half-plane H0 = {z ∈ C : Re z > 0}.

This Möbius transformation is (almost) the unique one with these properties.1 In particular,
the corresponding partition function for the even subgraphs model admits a huge zero-free region
similar to what we saw for the matching polynomial/monomer-dimer model.

Corollary 1.6. For every β ≥ 0, the multivariate polynomial

ẐG,β(ρ)
def
=

∑
F⊆E

tanh(β)|F |
∏

v∈odd(F )

ρv

is H0-stable.

2 Stability for Multivariate Independence Polynomials
In this section, we switch gears and study the zeros of the multivariate independence polynomial,
which we recall is given by

ZG(z)
def
=

∑
I⊆V independent

zI

for an arbitrary graph G = (V,E). The emphasis here really is on the multivariate case. We
will study stability w.r.t. a polydisk

∏
v∈V D(0, rv), where the {rv}v∈V can be highly nonuniform.

This will be essential for applications to polymer models, where our graphs have highly nonuniform
degrees, and each vertex has nontrivial combinatorial meaning.

2.1 Shearer’s Condition for Stability
We begin with the sharpest possible condition for polydisk stability of ZG. Later, we will see
stronger sufficient conditions (resulting in weaker theorems) which are easier to check in practice.
The following result says that the closest zeros to ZG to 0 lie on the negative real axis. Hence, to
check stability, it suffices to look at evaluations of ZG on the negative real axis. This is known as
Shearer’s Condition [She85]. In Appendix A, we discuss connections with the Lovász Local Lemma
(LLL). This connection between polydisk stability of the multivariate independence polynomial and
the LLL was first elucidated in a paper of Scott–Sokal [SS05].

To state the result, recall that for a subset of vertices S ⊆ V , we write N [S] =
⋃

v∈S N [v] =
S ⊔ {v : v ∼ u for some u ∈ S} for the closed neighborhood of S. We also write G[S] for the
induced subgraph on S.

Theorem 2.1 ([SS05]). Let G = (V,E) be a graph, and let p ∈ RV
≥0. Then the following are

equivalent:

• Polydisk Stability: The multivariate independence polynomial ZG(z) is
∏

v∈V D(0, pv)-
stable.

• Shearer’s Condition: For every S ⊆ V , ZG[S](−pS) > 0.

Furthermore, if either of these conditions hold, then the Taylor expansion for logZG(z) around 0
converges absolutely for all z ∈

∏
v∈V D(0, pv).

Proof. We first prove Shearer’s Condition implies polydisk stability. Let z ∈ CV be such that
|zv| ≤ pv for all v ∈ V . We prove that∣∣∣∣ ZG[S](z)

ZG[S−v](z)

∣∣∣∣ ≥ ZG[S](−p)

ZG[S−v](−p)
, ∀v ∈ S ⊆ V. (1)

1Any nondegenerate Möbius transformation mapping ∂D to the imaginary line must have the form bz+beiθ

z−eiθ
for

some angle θ and complex number b ∈ C. In our case, take θ = π so that eiθ = −1, and take b = 1.
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Once we have Eq. (1), the zero-freeness claim follows. Indeed,
∣∣ZG[S](z)

∣∣ ≥ ∣∣ZG[S−v](z)
∣∣· ZG[S](−p)

ZG[S−v](−p)
,

which is positive since ZG[S−v](z) ̸= 0 by induction, and ZG[S](−p)
ZG[S−v](−p)

> 0 by assumption.
We inductively prove Eq. (1). Using what essentially is the tree recursion for the hardcore

model, we may decompose the left-hand side as∣∣∣∣ ZG[S](z)

ZG[S−v](z)

∣∣∣∣ = ∣∣∣∣ZG[S−v](z) + zv · ZG[S−N [v]](z)

ZG[S−v](z)

∣∣∣∣
≥ 1− |zv| ·

∣∣∣∣ZG[S−N [v]](z)

ZG[S−v](z)

∣∣∣∣ (Triangle Inequality)

≥ 1− pv ·
∣∣∣∣ZG[S−N [v]](z)

ZG[S−v](z)

∣∣∣∣ . (Using |zv| ≤ pv)

On the other hand, by the same decomposition, the right-hand side is

ZG[S](−p)

ZG[S−v](−p)
= 1− pv ·

ZG[S−N [v]](−p)

ZG[S−v](−p)
.

Hence, to show Eq. (1), it suffices to use the inductive hypothesis to establish

ZG[S−N [v]](−p)

ZG[S−v](−p)
≤

∣∣∣∣ZG[S−N [v]](z)

ZG[S−v](z)

∣∣∣∣ .
We use the classic telescoping trick, similar to how we developed the correlation decay algorithm
for the hardcore model. If we order the vertices of N(v)∩S arbitrarily as u1, . . . , uk, then defining
S0 = S − v and Si = Si−1 − ui for all i = 1, . . . , k, we obtain∣∣∣∣ZG[S−N [v]](z)

ZG[S−v](z)

∣∣∣∣ = k∏
i=1

∣∣∣∣ ZG[Si](z)

ZG[Si−1](z)

∣∣∣∣
≥

k∏
i=1

ZG[Si](−p)

ZG[Si−1](−p)
(Induction)

=
ZG[S−N [v]](−p)

ZG[S−v](−p)
.

This completes the induction and the proof of stability.
Now, suppose Shearer’s Condition fails, i.e. there exists S ⊆ V such that ZG[S](−pS) ≤ 0. Let

z ∈ CV be defined by zv = −pv for v ∈ S, and zv = 0 otherwise. Then ZG(z) = ZG[S](−pS) ≤ 0.
On the other hand, ZG(0) = 1. By the Intermediate Value Theorem, there exists t ∈ [0, 1] such
that ZG(tz) = 0. By construction tz ∈

∏
v∈V D(0, pv), and so stability is violated.

To establish absolute convergence of the Taylor series, fix λ ∈
∏

v∈V D(0, pv), and consider
the univariate restriction z = tλ for a new complex-valued variable t. Since ZG is

∏
v∈V D(0, pv)-

stable, the univariate polynomial ZG(tλ) is zero-free in [−1, 1]. Since ZG(tλ) only has finitely many
zeros and [−1, 1] is a closed set, ZG(tλ) is zero-free in (−R,R) for some R > 1.2 Convergence of
the Taylor series then follows via similar arguments to the one used in the analysis of Barvinok’s
polynomial interpolation algorithm.

2.2 Stronger but Easier-to-Check Conditions
While Shearer’s Condition is sharp, it is unwieldy to use. The goal of this subsection is to derive
stronger sufficient conditions which are easier to apply in practice.

Theorem 2.2 (Dobrushin’s Condition; [Dob96a; Dob96b]). Let G = (V,E) be a graph and z ∈ CV .
If there exists a nonnegative vector y ∈ RV

≥0 such that

|zv| ≤
yv∏

u∈N [v](1 + yu)
, ∀v ∈ V, (2)

then ZG(z) ̸= 0, and the Taylor expansion for logZG(z) around 0 converges absolutely.
2Note that if λ is on the boundary of

∏
v∈V D(0, pv), then in principle this R > 1 could be extremely close to 1,

with proximity depending on n.
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Remark 2 (The Univariate Case). Consider the univariate independence polynomial ZG(λ) =
ZG(λ1) of a graph G = (V,E) of maximum degree ∆. Since z = λ · 1, if we take yv = 1

∆ for all
v ∈ V (which maximizes the function y 7→ y

(1+y)∆+1 ), then Eq. (2) becomes

|λ| ≤ ∆∆

(∆ + 1)∆+1
.

This is close but slightly better than the bound 1
e(∆+1) appearing in the Lovász Local Lemma.

However, the correct bound using Shearer’s Condition is λ∗(∆) = (∆−1)∆−1

∆∆ , which is tight by
considering (∆ − 1)-ary trees of increasingly larger depth (see e.g. [SS05]). Notably this is much
smaller than the uniqueness threshold λc(∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆−1 for the hardcore Gibbs measure

on graphs of maximum degree ∆.
Remark 3 (An Intermediate Version). It was shown in [Bis+11] that one can replace

∏
u∈N [v](1+yu)

in the denominator with ZN [v](yN [v]), the independence polynomial of the closed neighborhood
of v. This is a weaker condition than what is required in Eq. (2). In the context of the Lovász
Local Lemma and its many variants, this is sometimes called the “Cluster Expansion version”,
while Eq. (2) is sometimes called the “asymmetric version” (or the “lopsided version”).

Proof. Define p ∈ RV
≥ by pv = yv∏

u∈N[v](1+yu)
for all v ∈ V . We verify Shearer’s Condition, i.e. that

ZG[S](−p) > 0 for all S ⊆ V , and then apply Theorem 2.1. We do this by (strong) induction. For
each 1 ≤ k ≤ n, let IH(k) denote the following claim: For every S ⊆ V with |S| = k,

• ZG[S](−p) > 0, and

• ZG[S](−p)
ZG[S−v](−p)

≥ 1
1+yv

for every v ∈ S.

The base case k = 1 is trivial since G[S] consists of a single isolated vertex v, whence

ZG[S](−p) = 1− pv ≥ 1− yv
1 + yv

=
1

1 + yv
· Z∅(−p) > 0.

Now suppose we have established IH(k) for some 1 ≤ k ≤ n− 1. We use this to deduce IH(k− 1).
Note that the second claim of IH(k) says that ZG[S](−p) ≥ 1

1+yv
· ZG[S−v](−p), which combined

with the first claim of IH(k−1) (i.e. ZG[S−v](−p) > 0), already implies ZG[S](−p) > 0 for all S ⊆ V
with |S| = k. Hence, the key is to establish the second claim of IH(k); note that ZG[S−v](−p) > 0
makes the left-hand ratio well-defined. Using what essentially is the tree recursion for the hardcore
model, we may decompose the left-hand side as

ZG[S](−p)

ZG[S−v](−p)
=

ZG[S−v](−p)− pv · ZG[S−N [v]](−p)

ZG[S−v](−p)

= 1− yv
1 + yv

· 1∏
u∼v(1 + yu)

·
ZG[S−N [v]](−p)

ZG[S−v](−p)
.

Hence, to establish ZG[S](−p)
ZG[S−v](−p)

≥ 1
1+yv

, it suffices to use IH(1), . . . , IH(k − 1) to show

ZG[S−N [v]](−p)

ZG[S−v](−p)
≤

∏
u∼v

(1 + yu).

We use the classic telescoping trick, similar to how we developed the correlation decay algorithm
for the hardcore model. If we order the vertices of N(v)∩S arbitrarily as u1, . . . , uk, then defining
S0 = S − v and Si = Si−1 − ui for all i = 1, . . . , k, we obtain

ZG[S−N [v]](−p)

ZG[S−v](−p)
=

k∏
i=1

ZG[Si](−p)

ZG[Si−1](−p)

≤
k∏

i=1

(1 + yui
) (Inductive Hypothesis)

≤
∏

u∈N(v)

(1 + yu). (N(v) ∩ S ⊆ N(v))

This completes the induction and the proof.

7



Dobrushin’s Condition is nice but still not so easy to check. We will see a number of important
applications of the following theorem in the next lecture.

Theorem 2.3 (Kotecký–Preiss Condition; [KP86]). Let G = (V,E) be a graph and z ∈ CV . If
there exists a nonnegative function a : V → R≥0 such that∑

u∈N [v]

|zu| · ea(u) ≤ a(v), ∀v ∈ V, (3)

then ZG(z) ̸= 0, and the Taylor expansion for logZG(z) around 0 converges absolutely.

Remark 4. The astute reader might notice that Eq. (3) looks awfully similar to various versions
of Dobrushin/Dobrushin–Shlosman uniqueness criterion [Dob70; DS85; Hay06; DGJ09]. For this,
recall that for a q-spin system, we define the Dobrushin influence matrix R ∈ RV×V via

R(u → v)
def
= max

τ
max
b,c∈[q]

dTV
(
µτ,u←b
v , µτ,u←c

v

)
,

where τ : V \ {u, v} → [q] is a partial configuration. For the Gibbs measure of the hardcore model
with heterogeneous fugacities λ = {λv}v∈V ∈ RV

≥0, we have R(u → v) = λv

1+λv
for all pairs of

distinct neighboring vertices {u, v} ∈ E; all other entries are 0. To certify rapid mixing of Glauber
dynamics via path coupling, we typically impose some condition of the following form: For some
diagonal matrix D ∈ RV×V

≥0 , we have
∥∥D−1RD

∥∥
ℓ1→ℓ1

< 1, or equivalently,

∑
u∼v

λu

1 + λu
·D(u, u) < D(v, v), ∀v ∈ V. (4)

Cosmetically, this is almost the same as what we are asking for in Eq. (3). However, Eq. (4)
is weaker, which is made possible by the fact that we only consider nonnegative inputs to the
partition function; see also the discussion on univariate zero-freeness in Remark 2.

Proof. We verify the conditions of Theorem 2.2. Let yv = |zv| · ea(v) for all v ∈ V . Rearranging
Eq. (2), we need ∏

u∈N [v]

(
1 + |zu| · ea(u)

)
≤ ea(v), ∀v ∈ V,

which after taking logarithms reads∑
u∈N [v]

log
(
1 + |zu| · ea(u)

)
≤ a(v), ∀v ∈ V.

This is clearly implied by Eq. (3) due to the inequality log(1 + x) ≤ x, which holds for all x.
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A Connections Between Independence Polynomials and the
Lovász Local Lemma

Suppose we have a collection of events A1, . . . , An, and we wish to certify that with positive
probability, none of the events occur (i.e. Pr

[∧n
i=1 Ai

]
> 0). We typically view A1, . . . , An as “bad

events” we want to avoid, e.g. some desirable property fails for some random object of interest. If
the events were all jointly independent, then of course Pr

[∧n
i=1 Ai

]
=

∏n
i=1 (1− Pr[Ai]), which is

positive if (and only if) none of the events individually happen with probability 1. However, in most
applications, the events A1, . . . , An are not jointly independent. One could use the Union Bound
to say that Pr

[∧n
i=1 Ai

]
= 1− Pr [

∨n
i=1 Ai] ≥ 1−

∑n
i=1 Pr[Ai], but this requires

∑n
i=1 Pr[Ai] < 1

which is often too restrictive. The famous Lovász Local Lemma (LLL) allows us to significantly
“beat the Union Bound” assuming the collection of events {Ai}ni=1 are “not too dependent” on each
other. It is a fundamental tool in discrete probability and theoretical computer science, and often
goes hand-in-hand with the probabilistic method.

Definition 2 (Mutual Independence). Let A1, . . . , An be a collection of events within the same
probability space. For each i ∈ [n] and J ⊆ [n] \ {i}, we say Ai is mutually independent of
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{Aj : j ∈ J} if

Pr

Ai ∧
∧
j∈J′

Aj

 = Pr[Ai] · Pr

 ∧
j∈J′

Aj

 , ∀J ′ ⊆ J.

Definition 3 (Dependency Graph). Let A1, . . . , An be a collection of events within the same
probability space. We say an (undirected) graph G = (V,E) with V ∼= [n] is a dependency graph
for the events {Ai}ni=1 if for every v ∈ V , the event Av is mutually independent of the events
{Au : u ̸= v, u ̸∼ v}.

Remark 5. We emphasize that a collection of events {Ai}ni=1 need not have a unique dependency
graph. For instance, the complete graph Kn is always a valid dependency graph w.r.t. any
collection of events {Ai}ni=1, although this is not very useful since its vertices have large degree.
One can also consider directed dependency graphs, but we will not do so here. For further discussion
of these points, see e.g. [SS05].

The usual version of the Lovász Local Lemma states that if the events {Ai}ni=1

• admit a dependency graph of maximum degree ≤ d, and

• Pr[Ai] ≤ 1
e(d+1) for all i = 1, . . . , n,

then Pr
[∧n

i=1 Ai

]
> 0. Since d could be much smaller than the total number of events n (e.g. d ≤

O(1)), the second condition Pr[Ai] ≤ 1
e(d+1) is considered much less stringent than

∑n
i=1 Pr[Ai] < 1,

which is what the Union Bound requires. For us, we will be interested in the sharpest condition
under which we can guarantee Pr

[∧n
i=1 Ai

]
> 0, and more importantly, its connection with zero-

freeness of the multivariate independence polynomial and Shearer’s Condition.

Theorem A.1 (Shearer’s Lemma; [She85]). Let G = (V,E) be a graph on n vertices, and let
p ∈ (0, 1)n. Then the following are equivalent:

(1) ZG−N [I](−p) > 0 for every independent set I ⊆ V .

(2) ZG[S](−p) > 0 for every S ⊆ V .

(3) ZG(−λp) > 0 for every λ ∈ [0, 1].

(4) For every collection of events {Ai}ni=1 in some common probability space such that

• G is a valid dependency graph for {Ai}ni=1, and
• Pr[Ai] ≤ pi for all i = 1, . . . , n,

the conclusion of the Lovász Local Lemma holds, i.e. Pr
[∧n

i=1 Ai

]
> 0.

Furthermore, if any of these conditions are satisfied, then for every such collection of events
{Ai}ni=1, we have the lower bound

Pr

[
n∧

i=1

Ai

]
≥ ZG(−p) > 0.

Condition (2) is just Shearer’s Condition from Theorem 2.1. Conditions (1) and (3) are es-
sentially reformulations of (2) and stability of ZG. The most interesting part is how these three
zero-free conditions are all equivalent to (4), a purely probabilistic statement.

A.1 The Easy Equivalences Between (1), (2), and (3)
We begin by showing the equivalence between (1) and (2), which is straightforward. Clearly (2)
implies (1) just by taking S = V −N [I]. The following lemma immediately shows that (1) implies
(2).

Lemma A.2 (Inclusion-Exclusion for Independence Polynomials). For every p ∈ (0, 1)V and
S ⊆ V , we have the identity

ZG[S](−p) =
∑

I⊆V indep.
I∩S=∅

pI · ZG−N [I](−p).
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Proof. ∑
I⊆V indep.

I∩S=∅

pI · ZG−N [I](−p) =
∑

I⊆V indep.
I∩S=∅

∑
J⊆V indep.

I⊆J

(−1)|J\I|pJ

=
∑

J⊆V indep.

pJ
∑

I⊆J\S

(−1)|J\I| (Exchange order of summation)

=
∑

J⊆S indep.

(−1)|J|pJ (Nonzero contribution only if J \ S = ∅)

= ZG[S](−p). (Definition of ZG[S])

This shows that (1) is equivalent to (2). (2) implies (3) simply by combining Shearer’s Condition
with Theorem 2.1. Indeed a special case of

∏
v∈V D(0, pv)-stability is that ZG(−λp) ̸= 0 for all

λ ∈ [0, 1]. Since ZG(−λp) = 1 at λ = 0, by continuity, it must be that ZG(−λp) > 0 for all
λ ∈ [0, 1]. One could also have directly proven (2) implies (3) by adapting the inductive proof of
Theorem 2.1.

Now we show that (3) implies (2). We establish the contrapositive. Define the Shearer region
to be the set

S def
=

{
q ∈ RV

≥0 : ZG[S](−q) > 0,∀S ⊆ V
}
. (5)

Since S is the preimage of an open set under a continuous function, it is open. Now, suppose (2)
does not hold, i.e. p /∈ S. Define

λ̃ = λ̃(p)
def
= sup {λ ∈ [0, 1] : λp ∈ S} .

We show that ZG(−λ̃p) = 0. Since λ̃p ∈ ∂S, ZG[S](−λ̃p) ≥ 0 for all S ⊆ V by continuity. It
follows that

ZG(−λ̃p) = ZG−v(−λ̃p)− λ̃pvZG−N [v](−λ̃p) (For all v ∈ V )

≤ ZG−v(−λ̃p)

≤ · · · (Induction)

≤ ZG[S](−λ̃p),

for any S ⊆ V . Furthermore, because S is open, λ̃p /∈ S, and so there exists S ⊆ V such that
ZG[S](−λ̃p) = 0, whence 0 ≤ ZG(−λ̃p) ≤ ZG[S](−λ̃p) = 0. So, we indeed have ZG(−λ̃p) = 0 and
(3) fails.

A.2 Shearer’s Condition Implies LLL Conclusion

Proof of Theorem A.1: (2) =⇒ (4). For convenience, we write PS
def
= Pr

[∧
i∈S Ai

]
for any S ⊆

V ∼= [n]. We will prove that for every S ⊆ V , PS ≥ ZG[S](−p), the latter of which is positive by
assumption. For this, it suffices to show that for every S ⊆ V and every r ∈ S,

PS

PS−r
≥

ZG[S](−p)

ZG[S−r](−p)
. (6)

Indeed, this implies PS ≥ ZG[S](−p) · PS−r

ZG[S−r](−p)
, which is at least ZG[S](−p) by invoking the

inductive hypothesis PS−r

ZG[S−r](−p)
≥ 1. We prove Eq. (6) inductively by leveraging what is essentially
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the tree recursion for the hardcore model. Observe that

PS = Pr

[∧
i∈S

Ai

]

= Pr

[ ∧
i∈S−r

Ai

]
− Pr

[
Ar ∧

∧
i∈S−r

Ai

]

≥ Pr

[ ∧
i∈S−r

Ai

]
− Pr

Ar ∧
∧

i∈S−N [r]

Ai


= Pr

[ ∧
i∈S−r

Ai

]
− Pr[Ar] · Pr

 ∧
i∈S−N [r]

Ai

 (Mutual Independence)

≥ PS−r − pr · PS−N [r] (Using Pr[Ar] ≤ pr)

Hence, PS

PS−r
≥ 1 − pr · PS−N[r]

PS−r
. At the same time, we already saw that ZG[S](−p)

ZG[S−r](−p)
= 1 − pr ·

ZG[S−N[r]](−p)
ZG[S−r](−p)

. Hence, it suffices to use the inductive hypothesis to certify

ZG[S−N [r]](−p)

ZG[S−r](−p)
≥

PS−N [r]

PS−r
.

This inequality follows by combining the inductive hypothesis and the same telescoping trick as in
the proof of Theorem 2.1.

A.3 Tightness of Shearer’s Condition for the LLL
Proof of Theorem A.1: (4) =⇒ (2). We prove the contrapositive. Assume (2) fails for p ∈ RV

≥0.
We will construct a finite probability space (Ω, ν) and a collection of events A1, . . . , An ⊆ Ω with
dependency graph G, Pr[Av] ≤ pv for all v ∈ V , and Pr

[∧n
i=1 Ai

]
= 0. As in the proof of

the equivalence between (2) and (3), let λ̃ = sup {λ ∈ [0, 1] : λp ∈ S} where S is Shearer’s region
defined as in Eq. (5). As we argued in that proof, we have ZG[S](−λ̃p) ≥ 0 for all S ⊆ V , with
equality for S = V . For the rest of the proof, we replace λ̃p by p for notational convenience.

Applying Lemma A.2 with S = ∅, we see that

1 =
∑

I⊆V indep.

pI · ZG−N [I](−p).

Since ZG−N [I](−p) ≥ 0 for all independent sets I ⊆ V , we have a probability distribution over all
subsets of vertices Ω = 2V given by

ν(S) =

{
pS · ZG−N [S](−p), if S is independent
0, otherwise

.

We then take Av to be the event that v is in a random independent set sampled from ν.

Claim A.3. For every S ⊆ V , the marginal probability of S is given by

Pr
I∼ν

[S ⊆ I] =

{
pS , if S is independent
0, otherwise

.

This follows from the same inclusion-exclusion argument as in the proof of Lemma A.2. Claim A.3
directly implies mutual independence of v from V \N [v] for all v ∈ V in the sense of Definition 2.
This establishes that G is a valid dependency graph for {Av}v∈V . We also immediately get the
upper bounds Pr[Av] ≤ pv for all v ∈ V (additionally using λ̃ ∈ [0, 1]). All that remains is to show
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Pr
[∧n

i=1 Ai

]
= 0. For this, observe that for every S ⊆ V ,

Pr

[∧
i∈S

Ai

]
=

∑
I⊆S

(−1)|I| · Pr

[∧
i∈I

Ai

]
(Inclusion-Exclusion)

=
∑

I⊆S indep.

(−1)|I|pI (Claim A.3)

= ZG[S](−p). (Definition of ZG[S])

Taking S = V and using our assumption that ZG(−p) = 0 completes the proof.
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