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The entirety of this course (and this field of study) is based on the following two fundamental
problems. Suppose we have to huge collection Ω of objects (e.g. vectors in Rn, n-bit strings in
{0, 1}n), as well as a nonnegative weight function w : Ω → R≥0 (e.g. the {0, 1}-indicator function
of some meaningful subset of Ω).

Problem 1 (Counting). Compute the partition function Z
def
=

∑
x∈Ω w(x).

Problem 2 (Sampling). Let µ be the probability distribution on Ω given by µ(x) ∝ w(x), i.e.
µ(x) = w(x)

Z for all x ∈ Ω. Sample a random element X from Ω according to µ.

Without getting bogged down with too much details, let’s just say that in most settings, “have”
means we can freely find/store/manipulate single elements in Ω, we can efficiently test membership
in Ω if Ω lives within a larger ambient space, and we can efficiently query a blackbox which on
input x, spits out the value of w(x). One should think of Ω either as infinitely large, or as growing
exponentially fast w.r.t. some natural underlying parameter, e.g. the dimension n in {±1}n, with
n tending to infinity. Of course, we seek to develop efficient algorithms, and so such considerations
preclude trivial algorithms based on brute force enumeration of Ω and querying w(·) everywhere.

The goal of this course is to show you mathematical tools for designing and analyzing efficient
algorithms for solving these problems. We’ll see a diverse mixture of approaches, including:

• statistical physics methods like Markov chain Monte Carlo and correlation decay

• algebraic ideas based on the geometry of multivariate polynomials (e.g. zero-freeness)

• algorithms based on optimization

We’ll try to place further emphasis on connections between these approaches.

1 Why?
These problems occur in many settings of practical importance. Some more traditional applications
include the following.

• Statistical Inference: How can we learn useful statistical models from data, and make
accurate inferences about the world once we have them? Bayesian statistics provides a
powerful framework for understanding these questions. In the Bayesian approach, we have a
model of how observed data X (e.g. symptoms) is generated from unobserved variables Θ of
interest (e.g. diseases), i.e. conditional probabilities Pr[X | Θ]. The goal is then to infer Θ
given the observed data X (e.g. medical diagnosis from observed symptoms). It turns out,
in a certain mathematically precise sense, the optimal thing to do is to draw samples from
the posterior distribution Pr[Θ | X], which via Bayes’ Rule, can be expressed as

Pr[Θ | X] =
Pr[X | Θ] · Pr[Θ]

Pr[X]

where P[Θ] is a probability distribution encoding “prior knowledge” of the hidden parameters
Θ, and P[X] =

∫
Pr[X | Θ] · Pr[Θ] dΘ is the unconditional probability of observing X. In

this setting, typically the probabilities Pr[X | Θ] and Pr[Θ] are easy to compute since they
are specified by the statistical model, whereas the normalizing constant Pr[X] (essentially,
the partition function Z from Problem 1) is unknown and hard to compute [WJ08; KF09].
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• Statistical Mechanics and Phase Transitions: How can we understand macroscopic
properties of materials given only their microscopic composition? We often model such
systems mathematically using graphical models, which have a wide variety of applications
beyond statistical physics, including machine learning and social network analysis [WJ08;
KF09]. Many objects of interest to pure mathematicians, including independent sets, match-
ings, colorings, cuts, etc. can be captured by graphical models.

We have a graph G = (V,E) (e.g. Zd), and we imagine each vertex v is occupied by a particle
of some sort, labeled say by elements of [q] = {1, . . . , q}. To first order, the particles only
directly interact with their nearest neighbors, and so we have potentials ψe : [q]× [q] → R for
each edge e = {u, v} ∈ E describing the contribution of that edge to the energy of a global
system configuration σ : V → [q]. This energy is given by the Hamiltonian

H(σ)
def
= −

∑
e={u,v}∈E

ψe(σu, σv),

which gives rise to the Gibbs distribution (or Boltzmann distribution) µ over all possible
configurations [q]V given by

µβ(σ) ∝ w(σ) = exp (−βH(σ)) .

Here, the parameter β ∈ R≥0 is sometimes called the (inverse) temperature, and it controls
how strong we want these interactions to be. This is an extremely rich class of distributions.
Sampling from µβ and/or computing the partition function Z =

∑
σ∈[q]V exp (−βH(σ)) are

essential to understanding the Gibbs distribution. One of the profound insights we’ll see
later in the course is the connection between phase transitions in the “qualitative properties”
of µβ as we vary β [Bov06; FV17], and the computational complexity of counting/sampling
from µβ .

Some more recent applications, which are no less important but unfortunately won’t be discussed
in lectures due to time constraints, are the following.

• Fairness: How can we detect gerrymandering in redistricting plans? This question is fun-
damental to the U.S. democracy, since this type of manipulation can unfairly influence the
voting power of various groups, as well as bias the outcomes of elections. The methodology
implemented in a number of recent court cases is to compare the redistricting plan in question
with an ensemble of “typical” plans, randomly sampled from an appropriate probability dis-
tribution over all plans (see e.g. [DDS21]). Performing this sampling efficiently is incredibly
difficult, since the number of possible plans is astronomically large, and one must account
for a diverse set of constraints on allowable districts [DW22].

• Privacy: How can we conduct large-scale societal studies without compromising the privacy
of each individual’s data? This problem is primarily solved by making algorithms differ-
entially private [DN04; Blu+05; Dwo+06], as was done in recent deployments of the U.S.
Census [BUT23] and Apple products [Inc]. However, a difficult tradeoff must be made be-
tween the accuracy of the algorithm, and how well it maintains privacy. Remarkably, there
is a generic method called the exponential mechanism which attains and characterizes the
optimal theoretical tradeoff [MT06]. It works by taking the algorithm’s output and adding
noise drawn from a probability distribution specially tailored to the problem at hand. Effi-
ciently sampling from this distribution would yield optimal algorithms which are guaranteed
to be differentially private.

There are also tons of connections with optimization, combinatorics, optimal transport, geometry,
etc.

2 Counting Complexity
Similar to how there is a formal complexity theory for decision problems, there is also a complexity
theory for counting problems. In the land of counting problems, the analog of NP is #P. We won’t
need the formal definition of #P but roughly speaking, any NP decision problem gives rise to a #P

2



counting problem in the natural way: Instead of producing a single solution to the NP-problem,
the task is to count the number of such solutions.

Once we have such the complexity class #P, we can then ask what the hardest problems are in
#P. Paralleling the theory for decision problems, we have #P-hard problems, i.e. those for which
every counting problem in #P can be reduced to. The #P-hard problems within #P are then
the #P-complete problems. So what problems are #P-complete? As you might guess, #SAT, the
problem of counting solutions to an arbitrary Boolean formula is #P-complete. The proof actually
follows from a direct adaptation of the classical proof that SAT is NP-complete (the Cook–Levin
Theorem); the reduction preserves the number of solutions, i.e. it is parsimonious.

At first glance, one might expect that NP-complete decision problems always correspond to #P-
complete problems, and vice versa. As far as I’m aware, we don’t know that every NP-complete
problem necessarily gives rise to a #P-complete problem. A striking theorem of Valiant says that
the converse is false, namely there are actually #P-complete problems which correspond to decision
problems in P.

Theorem 2.1 (Valiant; [Val79]). The problem of exactly counting perfect matchings in an arbitrary
bipartite graph is #P-complete.

A mention in passing a seminal result of Jerrum–Sinclair–Vigoda, who gave an efficient algo-
rithm to approximate the number of perfect matchings in any bipartite graph to arbitrary accuracy
(formally, an FPRAS in the sense of Definition 1 below). Since the number of perfect matchings in
a bipartite graph, with bipartition L⊔R and |L| = |R| = n, is precisely the permanent of the n×n
adjacency matrix A ∈ RL×R, it immediately follows that computing the permanent if #P-hard.

Corollary 2.2. The problem of computing the permanent

per(A)
def
=

∑
σ∈Sn

n∏
i=1

Ai,σ(i)

of an arbitrary square matrix A ∈ Rn×n is #P-hard.1

One perhaps surprising juxtaposition is that the determinant2

det(A) =
∑
σ∈Sn

sign(σ)

n∏
i=1

Ai,σ(i)

is well-known to be efficiently computable. So even though these two quantities are cosmetically
similar, they have very different computational complexities.3

Since the state spaces we’re interested in are intractably large, we don’t typically expect to be
able to exactly count efficiently. However, there are some really interesting objects where we can
count. We mention one neat example.

Theorem 2.3 (Kirchhoff’s Matrix Tree Theorem). Let G = (V,E) be any graph, and let L ∈ RV×V

denote its Laplacian:

L(u, v) =


deg(u), if u = v

−1, if u ̸= v, {u, v} ∈ E

0, otherwise
.

Then for any vertex v ∈ V , if Lv denotes the (n− 1)× (n− 1) submatrix of L where the row and
column corresponding to v is removed, then det(Lv) equals the number of spanning trees of G. In
particular, there is an efficient algorithm for exactly counting spanning trees in any graph.

3 Approximate Counting and Sampling
Now let’s discuss the approximate versions of counting and sampling, as well as their connections.
We start with approximate counting since it is more straightforward.

1Here and throughout, Sn denotes the group of permutations on n letters.
2Here, sign(σ) is 1 if σ is made up of an even number of transpositions, and −1 otherwise.
3There is a whole field which studies the relationship between them from the complexity-theoretic perspective

called Geometric Complexity Theory.
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Definition 1 (FPRAS (Informal); see e.g. [JVV86]). Given Ω and w : Ω → R≥0, a fully
polynomial-time randomized approximation scheme (FPRAS) for estimating the partition func-
tion Z =

∑
x∈Ω w(x) is a (randomized) algorithm that, given an accuracy parameter 0 < ϵ < 1 and

a failure probability tolerance 0 < δ < 1, outputs a number Ẑ such that

Pr
[
(1− ϵ)Z ≤ Ẑ ≤ (1 + ϵ)Z

]
≥ 1− δ

in time poly
(
n, 1ϵ , log

1
δ

)
, where n is the size of the input describing Ω and w.

Note that it suffices to take δ to be some constant (e.g. 3/4), since one can always boost the
success probability to 1− δ by running O(log(1/δ)) independent copies of the algorithm and using
the “median-of-means estimator”.

Now let’s consider the approximate version of the sampling problem. A natural way to do this
is say that our algorithm samples from a distribution which is “close” to the distribution µ(x) ∝
w(x). A common way to quantify “closeness” is to use the total variation distance ∥µ− ν∥TV =
1
2

∑
x∈Ω |µ(x)− ν(x)| (sometimes also written dTV(µ, ν)). If X is a random variable taking values

in Ω, we’ll write Law(X) for the underlying probability distribution over Ω that X follows.

Definition 2 (FPAS (Informal); see e.g. [JVV86]). Given Ω and w : Ω → R≥0, a fully polynomial-
time approximate sampler (FPAS)4 for the distribution µ(x) ∝ w(x) on Ω is a randomized algo-
rithm which, given an error tolerance 0 < δ < 1, outputs a random element X ∈ Ω such that
∥Law(X)− µ∥TV ≤ δ in time poly

(
n, log 1

δ

)
, where n is the size of the input describing Ω and w.

First, why total variation distance? It turns out it implies closeness of all (bounded) statistics
of the distribution simultaneously.

Lemma 3.1. Let µ, ν be two probability measures on Ω. Then

∥µ− ν∥TV = sup
f

|Eµ[f ]− Eν [f ]| ,

where the supremum is over all 1-bounded functions f : Ω → [0, 1].

In particular, ∥µ− ν∥TV ≤ ϵ says that uniformly over all possible events A ⊆ Ω, the probability
µ(A) is within ϵ of ν(A). Hence, if we have an approximate sampler, then we can approximate the
expectation Eµ[f ] to within additive error δ for any bounded test function f . We’ll discuss this in
greater depth shortly.

Proof Sketch of Lemma 3.1. Since Ω is finite, we can view f : Ω → [0, 1] and µ, ν as big vectors
in [0, 1]Ω. Then |Eµ[f ]− Eν [f ]| = |⟨µ− ν, f⟩|, which is convex in f . This convexity immediately
implies the right-hand side equals supA⊆Ω |µ(A)− ν(A)| via the natural correspondence between
A ⊆ Ω and its {0, 1}-indicator function. Since |µ(A)− ν(A)| = |µ(Ω \A)− ν(Ω \A)|,

|µ(A)− ν(A)| = 1

2

∣∣∣∣∣∑
x∈A

(µ(x)− ν(x))

∣∣∣∣∣+ 1

2

∣∣∣∣∣∣
∑

x∈Ω\A

(µ(x)− ν(x))

∣∣∣∣∣∣ ≤ ∥µ− ν∥TV ∀A ⊆ Ω

by the Triangle Inequality. On the other hand, this inequality is saturated by the set A = {x ∈
Ω : µ(x) > ν(x)}, and so we must have equality.

3.1 The Monte Carlo Method
Suppose we wanted to estimate the expectation Eµ[f ] of some function f : Ω → R. Assuming
we have an exact sampler, one approach is to simply drawn a bunch of i.i.d. samples X1, . . . , XT

and use the empirical mean 1
T

∑T
i=1 f(Xi). This is the essence of the Monte Carlo method, and it

works thanks to the concentration of measure phenomenon.

Theorem 3.2 (Chernoff/Hoeffding Bound). Let Y1, . . . , YT be independent random variables such
that 0 ≤ Yi ≤ 1 w.p. 1 for all i = 1, . . . , T . Let Y def

= 1
T

∑T
i=1 Yi denote the empirical mean. Then

Pr [|Y − E[Y ]| ≥ ϵ · E[Y ]] ≤ 2 · exp
(
−ϵ

2 · E[Y ] · T
3

)
.

4If you look in the literature, the term FPAUS is more common, but it is defined specifically for the uniform
distribution.
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In particular, setting T = Θ
(

1
ϵ2·Eµ[f ]

log(1/δ)
)

and taking Yi = f(Xi) for X1, . . . , XT ∼ µ,
we get a multiplicative 1 ± ϵ approximation to Eµ[f ] with probability at least 1 − δ. If we had
access to only an approximate sampler such that X1, . . . , XT ∼ ν for ∥µ− ν∥TV ≤ η, then the
same algorithm would incur an extra additive error η in the approximation.

Corollary 3.3 (Correctness of Monte Carlo Method). Let µ be a probability measure over Ω, and
let f : Ω → [0, 1] be a 1-bounded function. Suppose have an FPAS for µ. Then we can compute a
number Ẑ such that (1 − ϵ) · Eµ[f ] ≤ Ẑ ≤ (1 + ϵ) · Eµ[f ] with probability ≥ 1 − δ, using at most
O
(

1
ϵ2·Eµ[f ]

log(1/δ)
)

calls to the FPAS with input total variation error ϵ
2 · Eµ[f ].

Note that all of this only works well if Eµ[f ] isn’t too small (e.g. Eµ[f ] ≥ Ω(1) or Eµ[f ] ≳
1/poly(n)). We mention in passing that if one were instead interested in unbounded functions
f but with finite variance, then one should instead use the median-of-means method (sometimes
called the “median trick”) to get adequate concentration; this is a much more robust estimator.

4 Equivalence Between Approximate Counting and Sampling
Now that we have the Monte Carlo method, it might seem that an approximate sampler is much
more powerful than an approximate counter. After all, we can use it to estimate the expectation of
almost any test function. Surprisingly, for a wide class of problems, it turns out these two notions
are equivalent, at least up to polynomial losses in the running time.

Theorem 4.1 (Informal; [JVV86]). For “self-reducible” Ω and w : Ω → R≥0, there exists an
FPRAS for estimating Z =

∑
x∈Ω w(x) if and only if there exists an FPAS for approximately

sampling from the distribution µ(x) ∝ w(x).

At a high level, “self-reducibility” captures the property that the given counting/sampling prob-
lem can be efficiently decomposed into counting/sampling subproblems of the “same type”. Later
on, we’ll see For simplicity, we’ll illustrate the idea of “self-reducibility”, as well as the proof of
Theorem 4.1, for a concrete class of objects which capture the core ideas: Let G = (V,E) be a
graph, and let ΩG denote the collection of all matchings in G of all sizes; recall that a matching is
a subset of edges M ⊆ E such that no vertex in V is incident to more than one edge in M . Let
w ≡ 1 so that the induced distribution µG is uniform over ΩG.

4.1 From Sampling to Counting
Let’s start by reducing counting to sampling, making use of the Monte Carlo method. This will
also illustrate why “self-reducibility” is important. Fix an edge e = {u, v} ∈ E, and partition the
set of matchings ΩG into those which contain or don’t contain e.

• Any matching in G containing e can be viewed as taking a matching in G−u−v and adding
e. Hence, the collection of matchings in G containing e is in one-to-one correspondence with
the collection of matchings in G− u− v.

• Any matching in G not containing e is equivalently a matching in G− e.

It follows that

Pr
M∼µG

[e /∈M ] =
|ΩG−e|
|ΩG|

,

and so

|ΩG| =
1

PrM∼µG
[e /∈M ]

· |ΩG−e| .

Since we can sample, we can estimate PrM∼µG
[e /∈ M ] using the Monte Carlo method. Fur-

thermore, ΩG−e is the collection of all matchings in a smaller graph where we have deleted e, so
presumably we can estimate it by induction. In this sense, we have effectively reduced the problem
of counting matchings in G to the same counting problem but in a smaller graph. Let’s now do
the full reduction.
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Claim 4.2. If there exists an FPAS for sampling a uniformly random matching in an arbitrary
graph, then there exists an FPRAS for estimating the number of matchings in an arbitrary graph.

Proof. Order the edges e1, . . . , em of E arbitrarily, and define a sequence of graph G0, . . . , Gm

where G0 = G and Gi = Gi−1− ei for all i = 1, . . . ,m; for convenience, write Ωi = ΩGi . Note that
Gm is the empty graph with no edges, and so |Ωm| = 1. Hence,

|ΩG| =
m∏
i=1

|Ωi−1|
|Ωi|

=

m∏
i=1

1

pi
,

where pi = |Ωi|
|Ωi−1| = PrM∼µi−1 [ei /∈ M ]. If we can compute estimates p̂1, . . . , p̂m which are

(1±O(ϵ/m))-multiplicative approximations to the true p1, . . . , pm, then taking the product
∏m

i=1
1
p̂i

gives a (1±O(ϵ))-multiplicative approximation to the total number of matchings |ΩG|.
We compute the p̂i via the Monte Carlo method (Corollary 3.3), taking the test function fi on

Ωi−1 to be the indicator fi(M) = I[ei ∈ M ]. For this to be efficient, we need that Eµi−1
[fi] = pi

is not too small. For this, we claim that we always have pi ≥ 1/2. This is because if ei = {ui, vi},
then every matching containing ei can be mapped injectively to a matching not containing ei just
by removing ei. In particular,

∣∣ΩGi−1−ui−vi

∣∣ ≤ ∣∣ΩGi−1−ei

∣∣ and so

pi =

∣∣ΩGi−1−ei

∣∣∣∣ΩGi−1−ei

∣∣+ ∣∣ΩGi−1−ui−vi

∣∣ = 1

1 +
|ΩGi−1−ui−vi |
|ΩGi−1−ei |

≥ 1

2
.

Applying Corollary 3.3 with error probability δ/m and taking an appropriate Union Bound finishes
the proof.

Remark 1. Going beyond matchings, e.g. say to some distribution µ over [q]n = {1, . . . , q}n for
some q ≥ 2, one might worry that we don’t a priori know which of the probabilities {Prσ∼µ[σ(i) =
c]}c∈[q] satisfies a nice lower bound. However, this isn’t really an issue, since at least one of them
must be at least 1/q. Furthermore, by estimating all of these probabilities using the Monte Carlo
method with total variation error, say 1/2q, we can identify any c ∈ [q] such that Prσ∼µ[σ(i) =
c] ≥ 1/2q, and then estimate that specific probability to (1± ϵ)-multiplicative error.

4.2 From Counting to Sampling
The basic idea to go from counting to sampling is to do everything we did above “in reverse”. In
particular, if we have an approximate counter, then given an edge e = {u, v} ∈ E, we can accurately
estimate qe = PrM∼µG

[e ∈ M ] = |ΩG−u−v|
|ΩG| by estimating both numerator and denominator. We

can then do the following:

• Include e in our sampled matching with probability qe, and exclude e with probability 1−qe.

• If we included e, then delete the endpoints u, v of e and recursively sample a uniformly
random matching of G− u− v.

• If we excluded e, then delete only the edge e (but keep its endpoints), and recursively sample
a uniformly random matching of G− e.

Remark 2. You might have noticed a little sleight of hand we did; we’re now using PrM∼µG
[e ∈M ]

rather than PrM∼µG
[e /∈ M ]. The reason is that by the argument above, PrM∼µG

[e ∈ M ] ≤
PrM∼µG

[e /∈M ], and so a (1±ϵ)-multiplicative approximation to PrM∼µG
[e ∈M ] implies a (1±ϵ)-

multiplicative approximation to PrM∼µG
[e /∈M ] (but not vice versa). One might worry this won’t

generalize beyond matchings, but this isn’t a significant issue: We could use our approximate
counter to compute an estimate q̂ for PrM∼µG

[e ∈M ] and another estimate p̂ for PrM∼µG
[e /∈M ].

While p̂, q̂ might not sum to 1, we have 1 − ϵ ≤ p̂ + q̂ ≤ 1 + ϵ and so we can instead use the
distribution which outputs 1 with probability p̂

p̂+q̂ and 0 with probability q̂
p̂+q̂ . This works more

generally, e.g. in the setting of Remark 1.

Claim 4.3. If there exists an FPRAS for estimating the number of matchings in an arbitrary graph,
then there exists an FPAS for sampling a uniformly random matching in an arbitrary graph.
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Proof (Assuming Deterministic Counter). For simplicity, so that we don’t have to deal with the
internal randomness of the FPRAS, let’s first assume the approximate counter is deterministic. So,
with probability 1, it will produce a (1± ϵ)-multiplicative approximation in time poly(n, 1/ϵ); this
is an FPTAS. We’ll deal with the general FPRAS case later.

Fix an arbitrary ordering of the edges e1, . . . , em. Our algorithm proceeds as follows: Let
G0 = G, let M̂ denote the current matching the algorithm has built up, and for each i = 1, . . . ,m,
do the following:

• If ei is incident to an edge already in M̂ , i.e. at least one of its endpoints is no longer present
in Gi−1, skip ei and move on.

• Otherwise, call our approximate counter to compute a (1± η)-multiplicative approximation
q̂i to the probability PrM∼µGi−1

[ei ∈M ], where η is some parameter to be determined later
(intuitively, η ≤ O(δ/m) where δ is the total variation distance we wish to achieve).

• With probability q̂i, add ei = {ui, vi} to M̂ and set Gi = Gi−1 − ui − vi. Otherwise, don’t
modify M̂ and set Gi = Gi−1 − ei.

Then for every matching M ⊆ E, writing Ei for the event that ei has the “correct status” w.r.t.
M (i.e. we include ei in the algorithm’s output if ei ∈M and exclude ei otherwise), then

ν(M) =

m∏
i=1

Pr
ν
[Ei | E1, . . . , Ei−1]

≤ (1 + η)
m ·

m∏
i=1

Pr
µG

[Ei | E1, . . . , Ei−1]

≤ exp(ηm) · µG(M).

Similarly, ν(M) ≥ exp(−ηm) · µG(M). It follows by direct calculation that ∥µG − ν∥TV ≤ 1 −
exp(−ηm), which is ≈ ηm for η ≤ O(1/m). At this point, we are already quite happy setting
η ≤ O(δ/m) and getting our sampler. Except, there is a slight subtlety. If we do this, then the
running time guarantee from our counting algorithm yields a sampler with running time dependence
poly(1/δ) instead of poly(log(1/δ)). Our final trick is to add a rejection sampling step at the very
end. To avoid confusion, let’s now call the above procedure the “inner algorithm”.

Set η ≤ O(1/m) (now independent of δ), and suppose the above algorithm outputs some
matching M . We will accept this matching and output it with probability µG(M)

ν(M) ; otherwise, we
throw away M and rerun the whole algorithm. Note that we can compute ν(M) exactly just via the
estimates q̂i we received along the way, since the counting algorithm is deterministic. Furthermore,
our approximate counter allows us to efficiently compute a (1± η)-multiplicative approximation Ẑ
of |ΩG|, and so we instead use

Pr[accept | propose M ] =
C

ν(M) · Ẑ

as our acceptance probability, where 0 < C < 1 is some universal constant chosen so that the
right-hand side doesn’t exceed 1. Since Ẑ and C are independent of M ,

Pr[overall algorithm outputs M ] = Pr[propose M ]︸ ︷︷ ︸
=ν(M)

· Pr[accept | propose M ] =
C

Ẑ
.

is uniform over all matchings M , i.e. any accepted matching M is perfectly distributed according
to µG. Furthermore,

Pr[accept | propose M ] = C · µG(M)

ν(M)
· 1

µG(M) · Ẑ
≥ C · exp(−ηm) · (1− η),

which we can ensure is at least Ω(1). At the same time,

Pr[accept | propose M ] ≤ C · exp(ηm) · (1 + η) ≤ 1,
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since η ≤ O(1/m) and C is an appropriate constant. Hence, in each call of the “inner algorithm”,
we accept with constant probability. So, with probability 1 − δ, we will accept some output
after O(log(1/δ)) attempts; if we reject all of the proposed matchings (which occurs only with
probability ≤ δ), we can output an arbitrary matching (e.g. ∅), and only incur an additional δ
error in the total variation distance. Ultimately, there are only one source of error in the total
variation distance (again, assuming our approximate counter is deterministic), namely there is a
possibility of rejecting all proposed matchings.

Remark 3. If instead of stopping after O(log(1/δ)) attempts, we just keep running the algorithm
until a matching is expected, then we would get a perfect sampler. Of course, this comes at the
expense of having a nondeterministic running time (which is constant in expectation, and poly(m)
with very high probability).

Proof (with Generic FPRAS). Now let’s suppose we have a randomized approximate counter. Due
to the internal randomness of the FPRAS, our estimates q̂i in the inner algorithm above are random
numbers, leading to a random output distribution ν over matchings. Nonetheless, if set the failure
probability of the approximate counter to be ≤ Õ(δ/m), then by the Union Bound, with probability
≥ 1 − δ, every estimate q̂i over all O(log(1/δ)) attempts of the inner algorithm will be close to
correct within the desired accuracy. Hence, if A is the event that all estimates are accurate and
M̂ denotes the output of the overall algorithm, then by the Law of Total Probability∥∥∥Law (

M̂
)
− µG

∥∥∥
TV

≤
∥∥∥Law (

M̂ | A
)
− µ

∥∥∥
TV︸ ︷︷ ︸

≤δ by above

· Pr [A]︸ ︷︷ ︸
≤1

+
∥∥∥Law (

M̂ | A
)
− µ

∥∥∥
TV︸ ︷︷ ︸

≤1

· Pr
[
A
]︸ ︷︷ ︸

≤δ

≤ 2δ.

At the same time, we’ve only incurred a logarithmic in m/δ overhead.

Remark 4. The randomness of the output distribution ν might be slightly confusing, e.g. since
its randomness is seemingly intertwined with the random coin flips we used in the inner algorithm
to decide whether or not to add ei to M̂ . Note however that these sources of randomness are
independent.

Another way to think about it is that imagine in background, for the sake of analysis, the
approximate counter was used to estimate every marginal probability for every possible execution
path of the inner algorithm. Suppose these estimates are all recorded as labels in a depth-m
binary tree, where each level-i node corresponds to having made a (valid) decision for e1, . . . , ei;
see Fig. 1. The root corresponds to initialization of the inner algorithm, the leaves correspond to
possibilities for M̂ , and the probabilities labeling the nodes tell you the probability of picking one
of the children.

Then when the inner algorithm is run, we traverse this tree from the root to a leaf by look up
the corresponding estimate q̂i in a node, and selecting one of the children with probability q̂i. At
the end, we pay the running time cost for the m (random) nodes that we query in this process.

5 The “All-or-Nothing” Theorem
We conclude with a very surprising and beautiful theorem due to Jerrum–Sinclair.

Theorem 5.1 (Informal; [SJ89]). Let Ω and w : Ω → R≥0 be a “self-reducible” counting problem,
and write n for the size of the input. Then for every constant C > 0, if there exists a polynomial-
time randomized algorithm which outputs an estimate Ẑ satisfying n−C · Z ≤ Ẑ ≤ nC · Z with
probability 3/4, then there is an FPRAS for estimating Z =

∑
x∈Ω w(x).

This result is striking for multiples reasons. First, it says that for self-reducible problems,
we can always boost an algorithm producing a n10000-multiplicative approximation to one that
produces a (1 ± ϵ)-multiplicative approximation for any ϵ > 0. Conversely, if there is no FPRAS,
then we cannot even hope to get a n10000-multiplicative approximation. This is in stark contrast
to the world of combinatorial optimization, where many many different levels of approximation are
possible.
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q̂1

q̂2 | e1

q̂3 | e1, e2 q̂3 | e1, e2

q̂2 | e1

q̂3 | e1, e2 q̂3 | e1, e2

Figure 1: Small example of the “tree of execution paths” of the inner algorithm.
Here, the q̂i gives the estimate of the marginal of ei conditioned on all previous decisions in the tree. We go
to the left child if we include ei (assuming this child exists, i.e. ei doesn’t intersect any previously included
edge), and go right otherwise. For example in the second level q̂2 | e1 is an estimate of PrM∼µG [e2 ∈ M |
e1 ∈ M ] and q̂2 | e1 is an estimate of PrM∼µG [e2 ∈ M | e1 /∈ M ].
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